

Parrot

Learning Structure from Motion from Motion

Clément Pinard^{a,b}

Laure Chevalley^a

Antoine Manzanera^b

David Filliat^b

^aParrot, Paris, France (clement.pinard, laure.chevalley)@parrot.com ^bU2IS, ENSTA ParisTech, Université Paris-Saclay, Palaiseau, France (clement.pinard, antoine.manzanera, david.filliat)@ensta-paristech.fr

(6)

Context and Motivations	Loss Functions
Learning Structure from Motion [4] Target view Depth CNN Depth CNN Transics Depth from a single Image	mera $M(I_t, I_i) = \frac{(2\mu_{I_t}\mu_{I_i} + C_1) + (2\sigma_{I_tI_i} + C_2)}{(\mu_{I_t}^2 + \mu_{I_i}^2 + C_1)(\sigma_{I_t}^2 + \sigma_{I_i}^2 + C_2)} $ (3) $\mu_I \text{ is local mean of image } I \text{ and } \sigma_I \text{ is local std of } I, \text{ obtained with Gaussian and Laplacian } 3 \times 3$ filters. s is the downsampling factor.
Nearby views Pose CNN R,t Depth from a single Image	e is $\mathcal{L}_p = \sum_i \ \widehat{I_i} - I_t\ _1 - \alpha \mathrm{SSIM}(\widehat{I_i}, I_t) \tag{4}$
i not robust enough i for the second seco	wn $\mathcal{L}_{g} = \left\ \frac{ \Delta \widehat{D} }{\ \nabla I_{t}\ } \right\ _{1} \times \frac{1}{\ \zeta\ _{1}} \tag{5}$

A new way of measuring Depth Accuracy

- Current validation from [1] makes **median of groundtruth depth map** available!
- Instead, use **speed estimation** for solving the **scaling factor**.
- Closer to navigation usecase where movement estimation is usually done by other sensors than camera, *e.g.* IMU or GPS.

		prior work [1, 4]	Our proposition							
	Predictions	Depth \widehat{D}	Depth \widehat{D} , Velocity \widehat{V}							
	Ground Truth	Depth D_{GT}	Depth D_{GT} , Velocity V_G							
	Measure	$m = \delta\left(D_{GT}, \widehat{D} \times \frac{Me(D_{GT})}{Me(\widehat{D})} ight)$	$m = \delta\left(D_{GT}, \widehat{D} \times \frac{ V_{GT} }{ \widehat{V} }\right)$							
1	\hat{O} is the median energy and $\hat{\delta}$ is a validation measure (a.g. 11 distance)									

Me() is the median operator, and δ is a validation measure (e.g. L1 distance)

Training Datasets

- Still Box [3] • Aims at having depth **independent to** context
- **Rigid** scenes
- **Random** orientation and velocity direction
- **Random** textures and shapes

KITTI [2]

- Realistic
- Not Rigid scenes
- **Always** the same orientation and position w.r.t ground
- Sparse ground truth and not available above horizon

For our experiments we used $C_1 = 0.01^2$, $C_2 = 0.03^2$, $\alpha = 0.1$ and $\lambda = 3$

 $\mathcal{L} = \sum_{s} \frac{1}{2^{s}} \left(\mathcal{L}_{p}^{s} + \lambda \mathcal{L}_{g}^{s} \right)$

100m

$$p_t^r = K R_r K^{-1} p_t \tag{2}$$

- For Drone results, a finetuning on a 15minutes video is applied.
- For ILLIX (KITTI upside down), no finetuning is done.

Quantitative results											
Method	training set	scale factor	testing set	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	
Zhou <i>et. al.</i> [4]	K	GT	K	0.183	1.595	6.709	0.270	0.734	0.902	0.959	
Zhou <i>et. al.</i>	K	V	K	0.279	2.706	7.296	0.356	0.582	0.808	0.898	
Ours	K	V	K	0.312	5.030	8.498	0.409	0.592	0.796	0.882	
Ours	$S\toK$	V	K	0.294	3.992	7.573	0.376	0.609	0.834	0.909	
Ours supervised [3]	S	V	S	0.212	2.064	7.067	0.296	0.709	0.881	0.946	
Zhou <i>et. al.</i>	S	V	S	0.811	11.996	17.274	0.693	0.347	0.573	0.717	
Ours	S	V	S	0.468	10.925	15.756	0.544	0.452	0.677	0.804	
Constant Plane	-	GT	K	0.457	4.852	12.085	0.600	0.296	0.549	0.752	
Zhou <i>et. al.</i>	K	GT	К	0.593	7.541	12.994	0.734	0.222	0.434	0.626	
Zhou <i>et. al.</i>	K	Р	К	1.588	62.107	21.142	0.958	0.169	0.326	0.474	
Ours	S o K	Р	К	0.648	15.391	12.432	0.624	0.382	0.617	0.761	

Network and Training Specification

- **PoseNet** is the same network as in [3]
- Depth CNN now is feeded **2 images** instead of 1
- second frame is Stabilized beforehand using rotation prediction from **PoseNet**
- translations are normalized so that $||t_r^{\text{NORM}}|| = T_0$, T_0 is **constant** throughout the whole training.
- Velocity \hat{V} will then be assumed to be $T_0 \times \text{FPS}$ during testing.

Conclusion

- Depth from context is suited for KITTI[2], but we showed two datasets on which it performed poorly.
- Current measures don't account for depth scale determination, which makes the problem **too easy** compared to a real usecase.
- Using multiple frames for depth allows much greater

$$\forall i, t_i^{\text{NORM}} = t_i \frac{T_0}{\epsilon + \|t_r\|}$$

robustness to unseen scenes or orientations.

• Training code **available on github**!

perso.ensta.fr/~pinard/

unsupervised-depthnet

References

[1] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. In Advances in neural information processing systems, pages 2366–2374, 2014.

[2] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[3] C. Pinard, L. Chevalley, A. Manzanera, and D. Filliat.

End-to-end depth from motion with stabilized monocular videos. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W3:67-74, 2017.

[4] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth and ego-motion from video. In CVPR, 2017.