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Context and Motivations

Learning Structure from Motion [4]

Pros :

Target view Depth CNN

'''''

Only needs videos with camera
Intrinsics
Depth from a single Image

Cons :

Depth from a single Image is
not robust enough

Scaling factor is not known

A new way of measuring Depth Accuracy

Current validation from [1] makes median of groundtruth depth map available!
Instead, use speed estimation for solving the scaling factor.
Closer to navigation usecase where movement estimation is usually done by other sensors
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Loss Functions
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(4 is local mean of image I and oy is local std of /, obtained with Gaussian and Laplacian 3 x 3
filters. s is the downsampling factor.
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For our experiments we used C; = 0.01%, G, = 0.03%, « = 0.1 and A =3

Qualitative results

than camera, e.g. IMU or GPS. Input

Ground truth

Zhou et. al.[4] Ours
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Still Box

prior work [1, 4] Our proposition
Predictions Depth D Depth 5 Velocity V
Ground Truth Depth D¢t Depth D¢r, Velocity Vet
Measure |m =9 (DGT, D x M/\;i?g)) m =0 (DGT, D x “‘/\%ﬂ)

Me() is the median operator, and ¢ is a validation measure (e.g. L1 distance)
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KITTI

. Drone
Training Datasets
Still Box [3] KITTI [2] No Cround Truth
Aims at having depth independent to Realistic o Groun rut
context Not Rigid scenes Available
Rigid scenes Always the same orientation and position IJ_J_I)'I_

Random orientation and velocity
direction

w.r.t ground

Sparse ground truth and not available
above horizon

Random textures and shapes
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For Drone results, a finetuning on a 15minutes video is applied.
For ILLIM (KITTI upside down), no finetuning is done.

Quantitative results

Method traslzéng fzccéjcfr testing set Abs Rel Sq Rel RMSE RMSE log § < 1.25 § < 1.25% § < 1.25°
Zhou et. al.[4] K GT K 0.183 | 1.595 | 6.709 0.270 0.734 0.902 0.959
S Zhou et. al K v K 0279 2706 7.296 0.356 0582 0808 0.898
Frame reprojection Ours K V K 0312 | 5.030 | 8.498 | 0409 | 0592 | 0.796 | 0.882
- . | Ours S K|V K 0204 3992 7573 0376  0.609 0.834  0.909
j 1S constructed from [, using the equation: Ours supervised [3]| S v S| 0212 | 2064 | 7.067 | 0296 0709 | 08381 | 0.046
Vi€ [0.N[.p = KT..,. (5(pt)K_1pt) (1) Zhou et. al S Vv S 0.811 11.996 17.274 0693 | 0347 & 0573  0.717
ot ’ Ours S V S 0.468 10.925/15.756 0.544 | 0.452 0.677 @ 0.804
when only considering rotation and translation : Constant Plane i GT y 0.457 @ 4852 12.085 0.600 | 0296 0549 | 0.752
r__ —1 /hou et. al. K GT A 0.593 | 7.541 | 12.994 0.734 0.222 0.434 0.626
pr = KR K p; (2) Thou @, 2l K p M | 158 62107 21142 0958 | 0169 0326 | 0.474
Ours S — K P A 0.648 15.391 12.432 0.624 0.382 0.617 0.761
Network and Training Specification Conclusion
PoseNet is the same network as in [3] Depth from context is suited for KITTI[2], but we
Depth CNN now is feeded 2 images instead of 1 showed two datasets on which it performed poorly.
second frame is Stabilized beforehand using rotation prediction from PoseNet Current measures don't account for depth scale
translations are normalized so that ||t19""|| = Ty, Ty is constant throughout the whole training. determination, which makes the problem too easy
Velocity V' will then be assumed to be 7y X FPS during testing. compared to a real usecase.
Using multiple frames for depth allows much greater
robustness to unseen scenes or orientations.
Training code available on github!
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