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Abstract— Using a neural network architecture for depth
map inference from monocular stabilized videos with appli-
cation to UAV videos in rigid scenes, we propose a multi-range
architecture for unconstrained UAV flight, leveraging flight data
from sensors to make accurate depth maps for uncluttered
outdoor environment.

We try our algorithm on both synthetic scenes and real UAV
flight data. Quantitative results are given for synthetic scenes
with a slightly noisy orientation, and show that our multi-range
architecture improves depth inference.

Along with this article is a video that present our results
more thoroughly.

I. INTRODUCTION

Scene understanding from vision is a core problem for
autonomous vehicles and for UAVs in particular. In this paper
we are specifically interested in computing the depth of each
pixel from image sequences captured by a camera. We as-
sume our camera’s velocity (and thus displacement between
two frames) is known, as most UAV flight systems include
a speed estimator, allowing to settle the scale invariance
ambiguity of the depth map.

Solving this problem could be beneficial for several
problems such as environment scanning or applying depth-
based sense and avoid algorithms for lightweight embedded
systems that only have a monocular camera. Not relying on
depth Sensors such as stereo vision, ToF camera, LiDar or
Infra Red emitter/receiver allows to free the UAV from their
weight, cost and limitations. Specifically, along with some
RGB-D sensors being unable to operate under sunlight (e.g.
IR and ToF), most of them suffer from range limitations and
can be inefficient in case we need long-range information
such as trajectory planning [7]. Unlike RGB-D sensors, depth
from motion is flexible w.r.t. displacement and thus robust to
high speeds or high distances as choosing among previous
frames gives us a wide range of different displacements.
For estimating such depth maps, we designed an end-to-
end learning architecture, based on a synthetic dataset and
a fully convolutional neural network that takes as input an
image pair taken at different times. No preprocessing such as
optical flow computation, nor visual odometry is applied to
the input, while the depth is directly provided as an output.
[18]
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Fig. 1. Camera stabilization can be done via a) mechanic
gimbal or b) dynamic cropping from fish-eye camera, for

drones or c) hand-held cameras

We created a dataset of image pairs with random transla-
tion movements, with no rotation, and a constant displace-
ment magnitude applied during the whole training.

The assumption about videos without rotation appears
realistic for two reasons:

• Hardware rotation compensation is mainly a solved
problem, even for consumer products, with IMU-
stabilized cameras on consumer drones or hand-held
steady-cam (Fig 1).

• this movement is somewhat related to human vision and
vestibulo-ocular reflex (VOR) [2]. Our eyes orientation
is not induced by head rotation, our inner ear among
other biological sensors allows us to compensate para-
site rotation when looking at a particular direction.

Using the trained network, we propose an algorithm for
real condition depth inference from a stabilized UAV. Dis-
placement from sensors is used to compute real depth map,
as it only differs from the synthetic constant displacement
images by a scale factor. Our network output also allows us
to a posteriori optimize the depth inference. By adjusting
frame shift to get a displacement that would make the
network get the same disparity distribution as during its
training, we lower the depth error for next inference. For
example, with large distances, ideal displacement between
two frames is higher, and thus the shift is also higher for a
given speed. Moreover, we use multiple batch inference to
compute multiple depth maps centered around a particular
range, and fuse them to get a high precision for both close
and far objects, no matter the distance, given a sufficient
displacement from the UAV.

II. RELATED WORK

Deep Learning and Convolutional Neural Networks have
recently been widely used for numerous kinds of vision
problem such as classification [13] and hand-written digits
recognition [14].



Depth from vision is one of the problems studied with
neural network, and has been addressed with a wide range
of training solution. Some datasets [6], [19] allow a neural
network to learn end-to-end depth or disparity [15], [22],
[4]. Reprojection error has also been used for unsupervised
training for depth from a single image [20], [23] or for
disparity between two frames of a stereo rig [12], [5].

Depth from a single image, although interesting, suffers
from a major drawback which is overfitting. No motion is
given to the network during inference, and the resulting depth
is inferred from context, whereas they can be decorrelated.
This technique can be sufficient for road driving context with
an obvious road in front of the camera, but for a UAV flight
usage, we may have to deal with very heterogeneous scenes.
On the other hand, depth from a stereo pair is only implying
a single lateral movement, and lacks a forward component
to appear realistic for any aerial stabilized footage.

For depth from more complex movement from a monoc-
ular camera, current state of the art methods tend to use
motion, and especially structure from motion, and most
algorithm do not rely on deep learning [1], [17], [11]. Prior
knowledge w.r.t. scene is used to infer a sparse depth map
with its density usually growing over time. These techniques
also called SLAM are typically used with unstructured move-
ment (translation and rotation with varying magnitudes),
produce very sparse point-cloud based 3D maps and require
heavy calculation to keep track of the scene structure and
align newly detected 3D points to the existing ones.

Our goal is to compute a dense depth map (where every
point has a valid depth) using only two frames from the same
camera, at different times, and without prior knowledge on
the scene and direction of movement, apart from the lack of
rotation and the scale factor.

III. END-TO-END LEARNING OF DEPTH INFERENCE

Inspired by flow estimation and disparity (which is essen-
tially magnitude of optical flow vectors), a problem to which
exist a lot of very convincing methods [8], [10], we set up an
end-to-end learning workflow, by training a neural network
to explicitly predict the depth of every pixel in a scene, from
an image pair with constant displacement value.

A. Still Box Dataset

We design our own synthetic dataset, using the rendering
software Blender, to generate an arbitrary number of ran-
dom rigid scenes, composed of basic 3d primitives (cubes,
spheres, cones and tores) randomly textured from an image
set scrapped from Flickr (see Fig 2).

These objects are randomly placed and sized in the scene,
and walls are added at large distances as if the camera
was inside a box (hence the name). The camera is moving
at a fixed speed value, but to an uniformly distributed
random direction, which is constant for each scene. It can
be anything from forward/backward movement to lateral
movement (which is then equivalent to stereo vision).

Fig. 2. Some examples of our renderings with associated
depth maps (red is close, purple is far)

B. Dataset augmentation

In our dataset, we store data in 10 images long videos,
with each frame paired with its ground truth depth. This
allows us to set a posteriori distances distribution with a
variable temporal shift between two frames. If we use a
baseline shift of 3 frames, we can e.g. assume a depth three
times as great as for two consecutive frames (shift of 1). In
addition, we can also consider negative shift, which will only
change displacement direction without changing speed value.
This allows us, given a fixed dataset size, to get more evenly
distributed depth values to learn, and also to de-correlate
images from depth, preventing over-fitting during training,
that would result in a scene recognition algorithm and would
poorly perform on a validation set.

C. Depth Inference training

Our network is broadly inspired from FlowNetS [3] (ini-
tially used for flow inference) and called DepthNet. It is
described in details in [18], we provide here a summary of its
structure (Fig 3) and performances. Each convolution (apart
from depth modules) is followed by a Spatial Batch Normal-
ization and ReLU activation layer. Batch normalization helps
convergence and stability during training by normalizing a
convolution’s output (0 mean and standard deviation of 1)
over a batch of multiple inputs [9], and Rectified Linear Unit
(ReLU) is the typical activation layer [21]. Depth Module are
convolution modules, reducing the input to 1 feature map,
which is expected to be the depth map, at a given scale. One
should note that FlowNetS initially used LeakyReLU which
has a non-null slope for negative values, but tests showed
that ReLU performed better for our problem.

The main idea behind this network is that upsampled
feature maps are concatenated with corresponding earlier
convolution outputs (e.g. Conv2 output with Deconv5 out-
put). Higher semantic information is then associated with
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Fig. 3. DepthNet structure parameters, Conv and Deconv
modules detailed above

Fig. 4. Result on 512x512 images from
DepthNet64→128→256→512. Upper-left: input, lower-left:

Ground Truth depth, lower-right: our network output
(128x128), upper-right: error, green is no error, red is

overestimated depth, blue is underestimated

information more closely linked to pixels (since it went
through less downsampling convolutions) which is then used
for reconstruction.

This multi-scale architecture has been proven very efficient
for flow and disparity computing while keeping a very simple
supervised learning process.

The main point of this experimentation is to show that
direct depth estimation can be efficient regarding unknown
translation direction. Like FlowNetS, we use a multi-scale
criterion, with a L1 reconstruction error for each scale:

Loss =
∑

s∈scales

γs
1

HsWs

∑
i

∑
j

|βs(i, j)− ζs(i, j)| (1)

where
• γs is the weight of the scale, arbitrarily chosen.
• (Hs,Ws) = (1/2sH, 1/2sW ) are the height and width of

the output.
• ζs is the scaled depth groundtruth, using average pool-

ing.
• βs is the ouput of the network at scale s.
As said earlier, we apply data augmentation to the dataset

using different shifts, along with classic methods such a flips
and rotations. We also clip depth to a maximum of 100m,
and provide sample pairs without shift, assuming its depth
is 100m everywhere. As a consequence, the trained network
will only be able to infer depth lower than 100m.

We applied training on several input size images, from
64x64 to 512x512. Fig 4 shows training results for mean
L1 reconstruction error. Like FlowNetS, network output are
downsampled by a factor of 4 with reference to the input
size. As Table I shows, best results are obtained with multiple



Network L1Error RMSE
train test train test

FlowNetS64 1.69 4.16 4.25 7.97
DepthNet64 2.26 4.49 5.55 8.44
FlowNetS64→128→256→512 0.658 2.44 1.99 4.77
DepthNet64→128 1.20 3.07 3.43 6.30
DepthNet64→128→256 0.876 2.44 2.69 4.99
DepthNet64→128→256→512 1.09 2.48 2.86 4.90
DepthNet64→512 1.02 2.57 2.81 5.13
DepthNet512 1.74 4.59 4.91 8.62

TABLE I. Quantitative results for depth inference networks.
FlowNetS is modified with 1 channel outputs (instead of 2

for flow), trained from scratch for depth with Still Box,
subscript indicates fine tuning process.

Fig. 5. Result on 512x512 real images input from a Bebop
drone footage

fine-tuning, with intermediate scales 64, 128, 256, and finally
512 pixels. Subscript values indicate finetuning processes.
FlowNetS is performing better than DepthNet but by a fairly
light margin while being 5 times heavier and most of the
time much slower.

IV. UAV NAVIGATION USE-CASE

A. Optimal frame shift determination

We learned depth inference from a moving camera, as-
suming its velocity is always the same. Results from real
condition drone footage, on which we were careful to avoid
camera rotation can be seen Fig 5. These results did not
benefit from any fine-tuning from real footage, indicating
that our Still Box Dataset, although not realistic in its scenes
structures and rendering, appears to be sufficiently hetero-
geneous for learning to produce decent depth maps in real
conditions. When running during flight, such a system can
deduce the real depth map ζ from the network output and the
drone displacement, knowing that the training displacement
was D0 (here 0.3m)

ζ(t) = DepthNet(It, It−∆t)
D(t,∆t)
D0

D(t,∆t) =
∥∥∥∫ tt−∆t

V (τ)dτ
∥∥∥ (2)

The actual correct interpretation of the output of DepthNet
is rather a percentage than a distance. 100% meaning max
distance for a given displacement D. We can introduce
a function β = DepthNet(It,It−∆t)

maxDistance and a dimension-less

parameter α = maxDistance
D0

for computing actual depth
using the displacement D as the only distance related factor.

ζ(t) = αβ(It, It−∆t)D(t,∆t) (3)

Depending of the depth distribution of the ground-truth
depth map, it may be useful to adjust frame shift ∆t. For
example, when flying high above the ground with low speed,
big structure detection and avoidance requires knowing pre-
cise distance values that are outside the typical range of
any RGB-D sensor. The logical strategy would then be to
increase the temporal shift between the frame pairs provided
to DepthNet as inputs. More generally, one must provide
inputs to DepthNet in order to ensure a well distributed depth
output within its typical range. Depth-wise normalized error
which is the essential quality measurement for values that
we want to rescale, will diverge when ground truth depth
approaches 0. Indeed, in addition to being equivalent to an
infinite optical flow, the depth-wise error cannot tend to 0,
which will make the expression error/depth tend to +∞ at 0
We thus need to choose the optimal spatial displacement and
corresponding temporal shift to minimize error on the next
inference, assuming the same depth distribution, to avoid too
low or too high equivalent ground-truth. We chose the space
displacement as:

Doptimal(t+ 1) =
E(ζ(t))

αβmean
(4)

With E(ζ(t)) the mean of depth values and βmean the
optimal mean output of β, e.g. 0.5. ∆(t) is then computed
numerically to get the frame shift with the closest corre-
sponding displacement possible.

B. Multiple shifts inference

As neural network are traditionally computed within mas-
sively parallel architectures such as GPUs, multiple depth
maps can be computed efficiently at the same time in a batch,
especially for low resolution. Batch inference can then be
used to compute depth with multiple shifts ∆(t, i). These
multiple depth maps can then be combined to construct a
higher quality depth map, with high precision for both long
and short range. We propose a dynamic range algorithm,
described Fig 6 to compute an combine different depth maps.

Instead of only one optimal displacement D(t) from E(ζ),
we use K-mean clustering algorithm [16] on the depth map
to find a list of clusters on which each shift will focus.
The clustering outputs a list of n centroids Ci(ζ) and
corresponding Di(t) and ∆(t, i). n is an arbitrary chosen
value, usually ranging from 1 to 4.

Final DepthMap is then computed from fusing these
outputs using a weighted mean for each pixel. Each weight
is actually a linear interpolation from 0 to 1 according to
distance of depth from a target value βmean. That way, fusion
will favor values that are closer to this optimal value. An ε
value is added to solve fusion when every depth map is off
its wanted range.
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Fig. 7. real condition application of the multi-shift algorithm with Tiny DepthNet Clamped. First image is input. Last two
are outputs of the network, for shifts of 50 and 13 with a drone flying forward at 1m.s−1 and at an altitude of 12m, with

corresponding displacements from sensors. Second is fused output, capped to 100m up

wijk = ε+ f(β(It, It−∆(t,i)))

f : x 7→


0 if x < βmin
x−βmin

βmean−βmin
if βmin ≤ x < βmean

βmax−x
βmax−βmean

if βmean ≤ x < βmax
0 if x ≥ βmax

ζi(t) = αDi(t)β(It, It−∆(t,i))

(5)

∀(j, k) ∈ J0,W K× J0, HK, ζf (t)jk =

∑
i wijkζijk(t)∑

i wijk
(6)

For our use-case, we set βmin = 0.1 , βmean = 0.4,
βmax = 0.9 and ε = 10−3. i is the index of frame shift, j, k
are the spatial indices. Fig 7 shows a result of the proposed
algorithm for a batch size of 2. Notice how the high shift
detects buildings while low shift detects trees.

C. Clamped DepthNet

Our proposed algorithm is actually suffering a problem
for real condition videos, because we assume a perfect
stabilization. Therefore, on very far objects (e.g. the sky),
any minor optical flow caused by a default in stabilization
will result in a massive error in depth. Moreover, our network

being very good at recognizing shapes and giving it the same
depth everywhere, this can result in the whole sky being
computed as relatively close. We thus propose a network
designed for a simpler problem: during training on still box,
we clamp depth from 10m to 60m, with a shift of 5 images
(instead of 3 for DepthNet). These new parameters allow the
network to only focus on mid range objects, dismissing close
and far objects with respectively a too large and too small
optical flow. This training workflow is very well suited for
multiple shift depth inference. Every image pair will have a
dedicated depth to analyze, allowing the fusion to not be
bothered with redundant data, because of the high initial
range of DepthNet.

Figure 8 shows results for multiples synthetic 256x256
scenes with ground truth, along with inference speed and
a small noise added to camera initial orientation at each
frame. R(t) = R0 + Euler(N0µ(t)), with µ(t) being a
3-dimensional random unit vector and N0 a constant fixed
to 0.001. We also report performance a thin version of our
clamped network, that shows better results than DepthNet
with 1 plane only in this noisy setup. The thin network has
the same depth, but every convolution has an output half
the number of feature maps of the original DepthNet. These



Fig. 8. results for synthetic 256x256 scenes with noisy
orientation. DepthNet has been tested with 1 and 2 planes,
DepthNet Clamped with 1 to 3 planes and Tiny DepthNet

Clamped with 1 to 4 planes. Y axis is Absolute mean error
(m) divided by ground-truth depth, X axis is inference

speed, in ms

results have been obtained on a Quadro K2200m powered
laptop.

V. CONCLUSION AND FUTURE WORK

We proposed a novel way of computing dense depth maps
from motion, along with a very comprehensive dataset for
stabilized footage analysis and a technique for dynamic range
real flight computing. This algorithm can then be used for
depth-based sense and avoid algorithms in a very flexible
way, in order to cover all kinds of path planning, from
collision avoidance to long range obstacle bypassing.

A more thorough presentation of the results
can be viewed in this video. http://perso.
ensta-paristech.fr/˜manzaner/Download/
ECMR2017/DepthNetResults.mp4

Future works include implementation of such a path
planning algorithm, and construction of a real condition
fine tuning dataset, using UAVs footages and a preliminary
thorough 3D offline scan. This would allow us to measure
quantitative quality of our network for real footages and not
only subjective as for now. We could also use unsupervised
techniques, using re-projection errors as in [23].

We also believe that our network can be extended to re-
inforcement learning applications that will potentially result
in a complete end-to-end sense and avoid neural network for
monocular cameras.

The major drawback of our algorithm is however the
necessity for a scene to be rigid. This is obviously never the
case, and even though UAV footage are less prone to moving
objects like in autonomous driving problems, we will have
this issue whenever a moving target is to be followed. To
solve this problem, an explicit movement equation for both
the camera and the moving targets may have to be computed,
as in [20]. In any case, this problem will be a challenge and
may not be solvable with fully Convolutional networks only
as we did in this article.
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