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Mathematical conventions

Throughout this thesis, unless specified otherwise, mostly for adequation with litterature
notation, we take the following notation convention:

• Scalar will be written as simple lowercase.

• Vectors will be written bold and lowercase. For example p = (x, y). An exception
can occur, for ease of notation when considering a 3D point P and its projection in
2D p.

• Scalar fields will be written as simple uppercase. Exception for depth and inverse
depth map, called θ and ξ to keep consistency with literature. For example depth
map:

θ(p) = z,
{

p ∈ R2

z ∈ R

• Vector fields will be written bold and upper case. For example optical flow F, or
multi channel image

I(p) = c,
{

p ∈ R2

c ∈ R3

• Matrices will be written bold, uppercase and with a straight font. For example M ∈
M2,2(R)

• Normalized values will be added a circumflex. It’s only applied on vector or scalar
fields for which we can compute spatial mean µ and variance σ. For example Î is
the normalized image I−µI

σI
.

• Estimations will be added a tilde. Generally, it will be compared against a groundtruth.
For example the depth map estimation θ̃ compared with ground truth θ, or the
warped image Ĩ1 obtained from I2 which aims at being the same as the original
image I1.

• Spatial gradients of scalar fields will be noted with ∇. For example the gradient of

depth θ is ∇θ(p = (x, y)) =

[
∂θ
∂x (p)
∂θ
∂y (p)

]
.

• For sake of simplicity, we can mention the spatial gradient of a vector field (while we
should talk about a Jacobian matrix). For example when talking about image spatial
gradient ∇I, what is actually referred is the spatial gradient of each I channel.

• When the scalar field f is a result of a function taking a vector W for argument (for
example a neural network with a set of weights W), we note ∇W f (p) the gradients
of f output at point p with respect to parameters W , with p fixed.
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• Similarly, the Jacobian JW of a neural network with weights W outputting a scalar
field f will be the function

JW : Rn → Rp

p 7→ ∇W f (p)
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symbols

Here are presented typical symbols and acronyms for our notations. Even if they are
specified when brought, this page can serve as a reminder for clarity.

Acronyms
UAV Unmanned Aerial Vehicle
IMU Inertial Measurement Unit
HUD Head Up Display
RTH Return To Home
RGB Red Green Blue
SLAM Simultaneous Localisation and Mapping
CNN Convolutional Neural Network
FOE Focus of Expansion (see below)

Scalars
Lp Photometric loss, denotes the difference between two images to be

minimized
Ls Smooth loss, denotes the regularization term that tries to constrain a

particular 2D map to be smooth.

Error measures (see 2.4.2)
MAE Mean Absolute Error E|θ − θ̃|
MRE Mean Relative Error E

(
|θ−θ̃|

θ

)
MLE Mean Logarithmic Error E|log(θ)− log(θ̃)|

SAE Standard Absolute Error
√

E(|θ − θ̃|2)

SLE Standard Logarithmic Error
√

E(|log(θ)− log(θ̃)|2)
Pδ Precision P

(
θ̃ ∈

[ 1
δ θ, δθ

])
Vectors

p 2D point in the image
P 3D point in the world
Φt Focus of Expansion (also referred to as FOE) with respect to camera translation t.

Scalar Fields
θ depth map of a particular image.
ξ inverse depth map. ξ(p) = 1

θ(p)

Vector Fields
I Multi channel Image. Usually with 3 channels.
F Optical Flow map
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Although already well developed, the consumer UAV (Unmanned Aerial Vehicle) mar-
ket is still said to show extremely high potential. Thanks to their simplicity of use, flying
cameras democratized aerial footage. Today anyone can make a quality aerial footage
without deep knowledge in aeronautics.

However, growing concerns on security of drone flights threatens the future growth of
this market. Indeed, a consumer drone crashing can be deadly if falling from 100 meters
high or more. This is why consumer drone regulations has strengthened by restricting the
usage of flying cameras to certified pilots in isolated areas. Thus the enforced regulations
diminish the number of potential customers. If we want the democratization process to
be complete, we need to gain popular trust by making flights as safe as possible.

1.1 Motivations of this thesis

This work is motivated by improving security for consumer flying cameras by studying the
obstacle avoidance possibilities for a UAV.



2 1.1. Motivations of this thesis

1.1.1 Anatomy of a consumer Drone

The application context of consumer drones implies particular binding conditions:

1. Design is cost-oriented. Unlike with professional UAVs, our strategy for an obstacle
avoidance system should also be cost-oriented to keep the product attractive for
consumers.

2. The aircraft needs to be compact. The consumer UAV is encouraged by the law
to stay under a particular weight limit (e.g. 800grams in France [Fra16]) so that the
consumer does not have to register it.

3. Battery life should be as long as possible, with a typical limit around ∼ 30minutes.

An obstacle avoidance system in this context should not rely on heavy or expensive
hardware, and should not require too much energy.

Besides, there are several elements that we can already consider reliable because
they are vital for a UAV designed to get quality aerial footage. Improving them is not in
the scope of this thesis and will be considered solved, at least for our needs.

1. High level commands. For the sake of accessibility, the commands are made as
intuitive as possible. Consumer UAVs can usually be controlled with the 6 degrees
of freedom, without the need to explicitly control the rotation speed of the motors.
More specifically, a UAV can be assimilated to its reference frame for which we can
control its rotation and speed.

2. High quality image stabilization. The need for high quality footage makes the frame
stabilization an essential feature for flying cameras. As such, the IMU system em-
bedded guarantees an error of orientation such that the frame stabilization, active
or passive (see figure 1.1) typically has at worst ≈ 1 pixel, for sensors up to 4K.
If we choose work on downscaled images, we can consider the stabilization to be
perfect.

3. Accurately calibrated intrinsic parameters. Most likely, frames are perfectly rectified
from geometric distortion, with perfectly known optical center and focal.

However, drone speed estimation is often noisy. Indeed, it mostly relies on inertial
sensors that actually measure acceleration and GPS signal, which measures position
with a precision of several meters. This can be mitigated by other sensors such as a
vertical camera, which will measure apparent displacement using odometry and deduce
speed from the altitude. Consequently we will not be able to easily link speed vector with
its projection on the frame plane, the so-called flight path vector in more advanced aircraft
heads up displays (HUD).

1.1.2 The problem of obstacles avoidance

Our strategy to improve safety on consumer UAVs is to focus on obstacle avoidance,
which is still a challenging problem in embedded system.

1Sources:

• https://www.dji.com/fr/phantom3-4k retrieved 07/24/2019

• https://www.parrot.com/fr/drones/parrot-bebop-2 retrieved 07/24/2019

• https://www.dji.com/fr/osmo-mobile-2 retrieved 07/24/2019

https://www.dji.com/fr/phantom3-4k
https://www.parrot.com/fr/drones/parrot-bebop-2
https://www.dji.com/fr/osmo-mobile-2
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Figure 1.1: Consumer products featuring camera stabilization. From left to right: DJI
Phantom (mechanic gimbal), Parrot Bebop (dynamic cropping from fish-eye), DJI Osmo
mobile (mechanic handheld guimbal)1

Figure 1.2: Parrot’s current Flight Plan in-
terface

Figure 1.3: DJI’s ActiveTrack interface

Typical use-cases of consumer flying camera can be divided in several subgroups. In
this list, we rank the scenarios based on the importance for an obstacle avoidance to not
be invasive, thus defining a more difficult use-case.

1. Return To Home (RTH): this use-case is an automatic flight mode with the simple
objective of joining a particular 3D point based on its coordinate, generally the point
where the UAV took off initially. This is particularly useful for out-of-range scenarios
where the user can no longer pilot the drone. In this scenario, the user does not
necessarily want to get good footage quality. The priority is to safely retrieve the
aircraft.

2. Automatic flight for footage, like e.g. Parrot’s Flight Plan (figure 1.2 and Follow
me or DJI’s ActiveTrack (figure 1.3): these flight modes require the video to be
aesthetically pleasing. Flight Plan is similar to RTH, but the drone has to join several
way-points in a particular sequence. Follow Me and ActiveTrack need the UAV to
follow the user via GPS or Visual tracking.

3. Manual flight: the user has the entire control of the flight. Obstacle avoidance in
this case would be only a flying helper, to avoid too dangerous piloting choices
while still following the desired direction as closely as possible. This mode is for
example featured with DJI’s APAS (Advanced Pilot Assistance Systems) 2.

For Manual flight and Flight Plan or Follow me, the good video quality requirements
not only refer to image quality, but also cinematography, with a smooth video. As such,

2Introduced with their product Mavic Air https://www.dji.com/fr/mavic-air, retrieved 07/24/2019

https://www.dji.com/fr/mavic-air
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Figure 1.4: A "jerky" trajectory (red) and a smoother one (green)

we want to avoid visible maneuvers as much as possible. This implies both the lowest
acceleration and acceleration variation possible (as known as "jerk"). Figure 1.4 shows
two trajectories regarding the avoidance of an obstacle when the initial desired trajectory
was a straight line. The red one has a very high jerk and acceleration and is not very
smooth, which would only be acceptable in the context of RTH, while the green one is
much smoother. This is the type of trajectory we want for our obstacle avoidance system.

We can see, however, that the green trajectory is altered well before the red one. The
trajectory modification decision thus needs to be planned early, and thus the obstacle to
be sensed with a longer range than with the RTH context with the sole purpose of not
crashing into the obstacle, regardless of the jerk.

1.2 Depth perception for navigation in robotics

Now that we have established our main navigation requirements for obstacle avoidance
for consumer drones, we can study the available techniques and related works to achieve
this goal.

The most classical approach for obstacle avoidance relies on two distinct parts, sense
and avoid. The first one is focused on perception, and the second one on action. [YZ15]

The perception can rely on several dedicated sensors to get information on the scene
structure. The goal is to get the distance of other objects relative to the aircraft. More
specifically, given a particular direction, we want to compute a depth map. Just like
camera compute a RGB (Red Green Blue) pixel map of what can be seen, the depth
map is a pixel map with a metric for each pixel, corresponding to the parallel distance
relative to the direction where the sensor is pointed at (hence the name depth, and not
distance). Figure 1.5 illustrates how we can link image pixels with their depth values.
The RGB picture here only serves illustration purpose and for navigation, knowing depth
perfectly is sufficient for obstacle avoidance.

It can be noted that the depth map is not the information we want per se, but rather the
position of possible obstacles with respect to the camera, for which a simple conversion
can be done based on the angle of view of a particular point with its depth. However, the
depth map format illustrates that for a given orientation, only one depth value is known
(the depth of the closest object). We don’t want to be able to know the distance of
occluded objects, since this would require prior knowledge of the scene.

1.2.1 Considered sensors for depth perception

For a UAV, we can list several solutions for active depth sensing. Contrary to e.g. cam-
eras, these sensors require the emission of a signal (light or sound), whose reflexion will
be measured to deduce depth:

• LiDar (Light detection and ranging) is a rotating light emitter (usually a laser beam)
for a receptor that will compute distance from the time for the emitted beam to to
be received back. If the direction of the beam is perfectly known, the depth can
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Figure 1.5: Example of RGB-D data, taken from[Lai+11]. For depth (right), bright colors
indicate lower depth (and thus closer object to the camera plane)

be deduced. This system has been used for example to get the depth of the KITTI
dataset [Gei+13].

• structured light, democratized with the first Kinect, and already equipped in products
such as DJI phantom 4. The principle is to project a light pattern from a light source
and identify it from a camera with a shifted position. The depth is deduced with
triangulation. [Bes88]

• ToF Cameras [Han+12] (Time of Flight), similar to Lidar but with no moving parts.

• Ultra sound sensors, which uses the same technology as Lidar but with sounds of
high frequency. This sensor is very cheap and is already available on almost all
consumer drones.

For passive depth sensing, which only requires measuring incoming signal such as
light, we can list two camera based solutions:

• Stereo Vision

• Monocular Vision

1.2.2 Active sensors advantages and limitations

Active sensors typically require less complex algorithm to deduce depth from perceived
signal: the complexity resides in its hardware conception which is can be done by a
specialized provider. Indeed, the emitted signal can be made in a particular pattern so
that its detection and identification from receiver is easy.

However, for all active sensors, having a suitable range for smooth obstacle avoid-
ance will require a powerful signal and thus a potentially heavy and power expensive
dedicated device, which would greatly lower autonomy, along with increasing weight and
manufacturing cost.

Besides, devices based on light emission and reception will suffer greatly for outdoor
contexts. Indeed, most of them rely on Infra-Red emission, which is a major light com-
ponent of sun rays. The receiver will then suffer a lot of noise and will have its typical
range greatly reduced. The solution might be to emit more powerful light, but (in addition
to power consumption) this is potentially hazardous for the human eye 3

Finally, once the sensor is integrated with fixed signal emission specifications, range
is fixed and thus not flexible to UAV speed. As a consequence, there will be a capped
speed above which the drone cannot sense obstacle ahead enough. This is even more
problematic to keep smooth trajectories since it needs long-time ahead planning.

3As reported e.g. in a 2010 ANSES report https://www.anses.fr/fr/system/files/AP2008sa0408.
pdf, retrieved 07/24/2019

https://www.anses.fr/fr/system/files/AP2008sa0408.pdf
https://www.anses.fr/fr/system/files/AP2008sa0408.pdf
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1.2.3 Vision based depth perception

An interesting alternative is to use a passive sensor, like the camera. The main problem of
the image coming from the camera is its extremely low information per pixels, which only
gives a RGB color estimate of a particular point. Unlike active sensors, depth deduction
from image signal is much more complex because it’s less closely linked with image color.

Computer vision is a science field aimed at extracting high level information from
these rudimentary "color maps" that are pictures taken from a camera, exploiting not only
colors but also spatial and temporal contexts, by working on neighboring pixels in frame
sequences or with multiple cameras.

In our context, a depth algorithm from computer vision would be an ideal solution be-
cause the camera sensor is already available. Besides, thanks to the UAV’s first function-
ality, the image quality already benefits from heavy engineering to make it visually pleas-
ant, and thus with a high functioning range of luminosity. Calibration, auto-exposition and
white balance are thus out-of-scope problems already solved for video quality purpose.

One of the main characteristics of computer vision is the analogy that we can make
with human vision, which is known to be one of the most important human sense, taking
up to half of our brain’s capacity [She+96]. Indeed, one could argue that the camera
system is already derived from the eye, by projecting light beams on a plane sensor. The
task given for computer vision could then be interpreted as the one given to the human
brain to extract critical information from retina receptors intensity of activation, similar to
color in image pixels.

Vision based depth sensing algorithms can then rely either on multiple cameras or
one camera.

Stereo vision

The first case is a well known setup with two cameras on a stereo rig and already stud-
ied [NKG09] and used on several existing consumer products for obstacle avoidance like
DJI’s APAS already mentionned, or Parrot SlamDunk (see figure 1.6). It is also bio in-
spired since it reproduces the binocular human view, exploiting parallax to deduce depth.
Provided computer vision techniques are able to match corresponding points on both
frames (which is already not an easy task, since images only provide color information),
a simple triangulation can be applied to deduce the depth. However, just as with struc-
tured light, the range of such algorithm heavily depends on image resolution and the
distance between the two cameras (called the baseline), parallax being proportional to
the ratio baseline/depth. Cameras too close to each other will have trouble sensing long
range depth, and stereo camera integration complexity increases with stereo baseline.
Typical stereo based obstacle avoidance systems on consumer drones can’t guarantee
to work at speeds higher than 10m.s−1, and at this speed they can only perform urgent
braking.

Monocular vision

The second case tries to get depth information from a single moving camera, either from
appearance or using structure from-motion-algorithms. An in-depth comparison of these
techniques is done at chapter 2. This is the use-case we will try to cover, because even
if it now requires solving motion in addition to depth, the hardware integration is much
easier. It is also flexible to already existing integrated hardware as long as a camera is
available. Namely, if a stereo rig is already integrated in a high-end consumer drone,
depth from single frame can also be used. This use-case can also be considered bio-
inspired, especially in the context of stabilized video because rotation compensation is
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Figure 1.6: Example of a stereo camera placed on a UAV in order to compute a depth
map (here, a Parrot Slam Dunk on top of a Bebop2)

somewhat related to human vision and vestibulo-ocular reflex (VOR) [DN33]. Our eyes
orientation is not induced by head rotation, our inner ear among other biological sensors
allows us to compensate parasite rotation when looking toward a particular direction.

Monocular Vision based navigation is actually already a well studied field, especially
within the context of SLAM algorithms[Cad+16; MAMT15; KM07; Fu+14]. Prior knowl-
edge w.r.t. scene is used to infer a sparse depth map with its density usually growing
over time. These techniques are typically used with unstructured movement, produce
very sparse point-cloud based 3D maps and require heavy calculation to keep track of
the scene structure and align newly detected 3D points to the existing ones. Although
tools like Octomap [Hor+13] can be used, SLAM is not widely used for obstacle avoid-
ance, but rather for 3D scan, where the cinematography and smooth video requirements
are clearly ignored. It could also be argued that when trying to avoid obstacle while fol-
lowing a flight plan, mapping will mostly contain information about past elements which
are no longer useful.

1.3 Deep Learning Approach

For this work we chose to focus on deep learning methods for vision. The deep learning
approach is thus briefly presented here along with motivations to use it.

1.3.1 A brief historic

Just like camera and computer vision, initial motivations for deep learning were bio-
inspired. The core idea is to develop a learning algorithm that would capitalize on ex-
perience to get better over time.

The first iteration, called the perceptron [Ros58] was just the simulation of a neural
networks, with neurons firing an activation or not based on a simple arithmetic operation
over its inputs, as presented figure 1.7. We can already see how this structure could be
parameterized and perform very different operations based on it.

4Figure source: http://neuralnetworksanddeeplearning.com, retrieved 07/24/2019

http://neuralnetworksanddeeplearning.com
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output(x0 · · · xn) = 1s>α, s = ∑
i

wi × xn

Figure 1.7: First simulation of a neuron, x0 · · · xn are the inputs, while w0 · · ·wn and α
are changeable parameters.4

The learning dimension was further improved by making every operation differen-
tiable. That way it was possible to compute the gradient of a network output regarding
every one of its parameters thanks to the back-propagation algorithm. The learning strat-
egy was then to define a loss function to minimize and then perform a gradient descent
to match the desired output. [RHW+88]

If we define a neural network as a function f taking trainable parameters vector W
(called weights), and an input vector I (e.g. a colored image), we can define the result
of an inference to be f (W , I). The optimization of this neural network then consists in
updating the vector W to get a desired output. More specifically, if we define a loss
function L to evaluate the output with respect to a known target, and an evaluation set V
of images I and target outputs t, we want to reach the global miminum:

W f inal = arg min
W

E(I,t)∼VL( f (W , I), t)

V is the set of valid samples on which we want the network to perform, e.g. the set of
all possible video frames from a micro UAV. The most standard way of finding this global
minimum is to apply a stochastic gradient descent (SGD) [Bot10] on a set of training
samples (I, t), separated from the validation set.

W ←W − λ∇WL( f (W , I), t)

Where λ is called the step size and the gradient vector is computed with back-
propagation algorithm. Throughout a series of samples I with a way to evaluate the
network output, the weights W are updated multiple times to try to achieve minimum loss
on the validation set.

It is thus important to note that the learning workflow is essentially based on loss
gradient (rather than loss value). Designing a loss is not the same as designing an
evaluation function. It should not be forgotten and will be an important topic in chapter 4.

In this very brief presentation, we don’t cover all the variation of this very basic gradi-
ent descent designed to solve optimization problems such as local minimum or over-fitting
[TLL95], and throughout this document, we will mention and use common good practices
to make a particular network converge to the desired estimator without extensive justifi-
cations.

1.3.2 Deep learning with convolutional neural networks for computer ci-
sion

Convolutional Neural Network (or CNN), a particular set of neural network designed by
Fukushima et al. [Fuk80] are widely used for computer vision problems with a lot of
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success [LeC+98; KSH12]. This architecture tries to extract information from pixels us-
ing operations specially designed to link neighboring pixels together instead of having a
dense network.

This method has proven extremely useful and scalable for many computer vision
benchmarks where deep learning solutions using CNNs are now very competitive. This
includes in addition to classification, optical flow [But+12], depth from stereo[SS02], odom-
etry [GLU12], or depth completion [Uhr+17]. 5

It’s also interesting to note that, as shown by Krizhevsky when working on AlexNet
[KSH12], the first operations done by the convolutional kernels are very similar to intuitive
hand crafted features such as gradient extraction. Semantically, it shows that a CNN can
be divided into two parts: the first one being representation learning, where a map of
pixels is projected into a map of interesting features for a specified learned tasks, and the
second one being the task solving per se.

1.3.3 Deep learning for decision making

Recently popularized by DeepMind work on Atari [Mni+15] or Go [Sil+16], deep learning
has been used with some success on decision making, showing that highly semantic
tasks could be performed as well.

In 2006, LeCun et al. [Mul+06] had already shown that a CNN could be trained
to mimic a human behavior on a simple case of off-road driving. This idea was also
applied on UAV in order to follow a specified road or pedestrian path [Giu+16; Loq+18].
While obviously not enough for true autonomous driving or flying, these works enlighten
the control learning capacity with an easily optimized loss function (here, the difference
between human controls and predicted ones).

On the other hand, the field of reinforcement learning [Wat89] showed the potential of
a truly Neural network powered autonomous system only supervised by a simple sparse
reward function (e.g. positive reward for not crashing, negative reward for crashing).
Counter intuitive but efficient strategies can then emerge and beat human level, that
would have been impossible with imitation learning.

However, these systems are known to be extremely hard to train, requiring extensive
trial and error before being able to shape a meaning reward where no degenerate strategy
can be found [Hen+18].

As suggested with DaGGer by Ross et al. [Ros+13; RGB11], a mid point could be
human supervision, only when needed, as an emergency intervention. That way more ex-
ploration could be done compared to imitation while still having supervision when needed.
Of course this needs the constant attention of a human supervisor which is very expen-
sive.

1.3.4 Interest of deep learning for consumer UAVs

One could argue that similarly to dedicated hardware sensors, deep learning vision so-
lutions may not be a good option because most of them are fairly heavy and require a
powerful GPU to be run real-time.

It is however reasonable to expect work to be done on very light neural networks,
and the development of specialized hardware that can be easily embedded in consumer
products like micro UAVs.

5A compelling robust challenge was made during CVPR 2018. Unfortunately, no technical report has
been made. Leaderboard can be found here: http://www.robustvision.net/leaderboard.php, retrieved
07/24/2019

http://www.robustvision.net/leaderboard.php
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Most importantly, for a product like a flying camera, multiple computer vision tasks
are at stake at the same time, e.g. tracking a moving target for a Follow Me/ActiveTrack
use-case, odometry or depth sensing. A recent work [Zam+18] showed that several tasks
could be combined in the same network in order to perform only one feature extraction
that would be useful for both purposes. It then seems reasonable to think about such an
architecture as a supplementary motivation to use embedded deep learning.

1.4 Approach and goal of the thesis

1.4.1 Hardware setup

From last sections, we define a minimal hardware context on which any solution proposed
by this thesis is supposed to be used.

1. High quality stabilized camera, roughly pointed at the drone displacement direction.

2. No active sensor available, no stereo cameras.

3. Possibility to run embedded CNNs for inference. No fixed computing power is spec-
ified, but compact networks will be preferred when possible.

Throughout this thesis, this hardware choice will be taken in count in the different
design motivations.

1.4.2 Discarding the naive solution

When considering deep learning for the goal of smooth obstacle avoidance, we could
be tempted to test an end-to-end solution that would take monocular images as input,
and provide maneuver commands for a safe and smooth flight. This would challenge
the traditional workflow of sense-and-avoid by combining the two tasks within the same
network, and could potentially result in a very light and responsive solution, the same way
an human would avoid obstacle, without the need to explicitly measure objects distance.

Unfortunately, it would be naive to attempt at training a network from scratch for such
a task, because of the reward sparsity and the obvious risks for a potential mistake. It
goes without saying that the crash and retry strategy which would be inevitable at least at
the beginning of the training is not easily scalable, although it has been tested in cluttered
spaces at low speed [GPG17].

One could also use a first training pass with imitation learning, as shown in the already
mentioned works [Giu+16; Loq+18]. The idea was to construct a dataset for imitation
learning in a way that would not involve any UAV flying, but rather humans following
normal paths. Constructing an imitation dataset only required humans to walk or bike
normally, making the dataset very easy to construct, and the drone learned to imitate the
motion of a human head. Unfortunately, these works were only successful in the context
of a simple task: following a clear path on the ground, and many use-cases where no
ground can be seen will fail, rendering the pretraining useless.

In contrast, comprehensive datasets for imitation learning of obstacle avoidance are
very hard and expensive to construct because it involves flying a drone near obstacles
numerous times risking human error each time.

In this section we thus discuss a potential path to reach obstacle avoidance by setting
intermediate pre-objectives, with easier supervision, in the hope of using reinforcement
learning with an already highly functional system.
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Figure 1.8: Graph of milestones complexity regarding domain and task complexity. Ar-
rows indicate a possible reutilization of networks with a fine-tuning fashion. Red points
indicate considered milestones in this thesis.

1.4.3 Training with increasing complexity

This problem can be analyzed along two complexity axes: the domain complexity, and
the task complexity. Figure 1.8 presents several tasks.

1. For a given task, the domain can be simplified by using a simulator, where data
annotated either with ground-truth or reward is very easy to construct. However, a
simulator will necessarily differ from the more complicated reality, and an algorithm
with good performances on simulator has chances of performing poorly in reality.

2. Task complexity represents in a sense the sparsity of the useful information for a
neural network to learn. Namely, regression problem with ground-truth are deemed
much easier to train because each network inference will trigger a loss and thus a
weight correction. On the other hand, reinforcement learning systems will only have
meaningful rewards once in a while and might take a lot of experience replay to be
trained.

From this analysis we decided to consider four different tasks and domains:

• Depth Sensing in simulator. The "easiest" of them, a classic supervised algorithm
can be used, this will be the subject of chapter 3.

• Depth Sensing in real scenes. Simple task but with expensive ground truth. A
solution to overcome this is to use already known computer vision techniques to get
a self-supervised training. This will be the subject of chapter 4.

• Obstacle avoidance in simulator using perfect Depth maps as input. Several avoid
algorithms can be used for supervision if the depth is perfect, such as Model Pre-
dictive Control [Ric+78; LH17]. Crashing the camera multiple times is not a problem
since everything is simulated.

• Obstacle avoidance in real life. This features all levels of complexity, where crashes
need to be extremely rare, and constitutes our final goal. A first working solution can
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use the concatenation of a depth sensing in real scenes and obstacle avoidance in
simulator.

The General strategy can then be summarized by solving the simplest task and adding
complexity later on. These tasks still heavily rely on the sense and avoid paradigm since
the last network will be the concatenation of a depth sensing and obstacle avoiding from
depth. However, it will be possible to train a more compact network in a supervised way to
get the same results. This technique is called knowledge distillation. [Rom+15; HVD15].
These milestones are particularly interesting because each of these tasks if solved can
be easily used in a classic sense-and-avoid system for a working solution even if the last
step is not reached yet. This will be discussed in chapter 6.

1.4.4 Resulting scope of this thesis

The scope of this thesis does not cover all the possible milestones for an end-to-end
obstacle avoidance neural network. Instead, we heavily focused on two tasks, by trying
to conduct the most exhaustive study possible, while keeping the end goal of obstacle
avoidance.

These two tasks are the depth sensing algorithms, inside a simulator and on real
video footage, with the possible inclusion in a sense and avoid pipeline.

As such, we won’t heavily study control technique for obstacle avoidance. Paradox-
ically, even if the long term end goal is to replace the sense-and-avoid paradigm to an
end-to-end one, the main goal of the thesis will be to develop a reliable depth sensing
solution. The knowledge distillation strategy in the end is what makes this strategy still
relevant.

1.5 Contributions

This work led to two publications in international conferences and one publication to an
international workshop, the two conferences are related to robotic navigation, and the
workshop is related to computer vision and geometry.

• [Pin+17a]: Clément Pinard, Laure Chevalley, Antoine Manzanera, and David Fil-
liat. “End-to-end depth from motion with stabilized monocular videos”. In: ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-
2/W3 (2017), pp. 67–74. DOI: 10.5194/isprs-annals-IV-2-W3-67-2017. URL:
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-
2-W3/67/2017/

• [Pin+17b]: Clément Pinard, Laure Chevalley, Antoine Manzanera, and David Filliat.
“Multi range Real-time depth inference from a monocular stabilized footage using a
Fully Convolutional Neural Network”. In: European Conference on Mobile Robotics.
ENSTA ParisTech. Paris, France, Sept. 2017. URL: https://hal.archives-
ouvertes.fr/hal-01587658

• [Pin+18]: Clément Pinard, Laure Chevalley, Antoine Manzanera, and David Filliat.
“Learning structure-from-motion from motion”. In: ECCV GMDL Workshop. Mu-
nich, Germany, Sept. 2018. URL: https://hal.archives- ouvertes.fr/hal-
01995833.

https://doi.org/10.5194/isprs-annals-IV-2-W3-67-2017
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W3/67/2017/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W3/67/2017/
https://hal.archives-ouvertes.fr/hal-01587658
https://hal.archives-ouvertes.fr/hal-01587658
https://hal.archives-ouvertes.fr/hal-01995833
https://hal.archives-ouvertes.fr/hal-01995833
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1.6 Outline of this thesis

In addition to this introduction, this thesis is divided in five parts:

• chapter 2 will try to define an evaluation method for depth sensing, with obstacle
avoidance in mind. The goal is to discuss current literature on this matter, with its
applications and limitations. More specifically, we will see that current benchmarks
for depth evaluation might not be suited for the flying camera context, and resulting
best strategies for them, using depth from context rather than structure from motion
are not ideal for us. In the last section, we will be interested in the amount of
information a particular evaluation of an estimator gives on future estimations in the
wild.

• chapter 3 will discuss the possibility for a CNN to deduce depth from a pair of
stabilized frame. This is the first step in our general long term strategy. After having
defined our geometric context, we will further subdivide this problem into an optical
flow problem coupled with geometric triangulation, and show that an end-to-end
solution (in the context of depth perception) that covers the whole problem at once
outperforms the optical flow strategy in the context of a dedicated synthetic dataset
created for this thesis. This solution uses a CNN called DepthNet.

• In chapter 4, we aim a finetuning our network trained on synthetic images with real
data. After establishing that the training described in previous chapter was only
theoretical and cannot be performed to finetune on real world videos where the
ground truth is not easily available, we will try to cover the possible strategies for un-
supervised learning, using the techniques of photometric reprojection error based
optimization. This training technique being relatively new and based on heuristics,
we try to describe currently used methods as thoroughly as possible, while linking
them with already existing analytical structure from motion methods. More specifi-
cally, we discuss the core idea, the possible regularization terms in the optimization,
with depth smoothing and occlusion detection, and finally the methods to measure
the difference between two frames in a differentiable way.

• chapter 5 will apply the conclusions from previous chapter to perform an unsu-
pervised training of our proof of concept network DepthNet, presented chapter 3.
We then show that the resulting network, when used in the evaluation context pre-
sented in chapter 2, outperforms other unsupervised solution, mostly thanks to its
structure from motion angle of attack in opposition to all other depth appearance
related works.

• chapter 6 will present a strategy to use the resulting network with real videos.
Namely, we will focus on how to construct an optimal input for DepthNet, and even
how to exploit parallel inference to perform a high dynamic range of depth inference.
Finally, we will present our proof of concept for obstacle avoidance using DepthNet
with an off-the-shelf obstacle-avoidance-from-depth algorithm.

• Finally, chapter 7 will conclude this thesis regarding the long-term end-goal and
the strategy that we initially designed, mentioning what issues should be solved.
We will try to propose potential future work for this, but also for other perspectives
related to this work.
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Chapter 2

Depth estimation from a camera

Contents
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2.2.2 Depth from motion advantages and limitations . . . . . . . . . . 18
2.2.3 Our strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Obstacle avoidance oriented depth quality . . . . . . . . . . . . . . . . . 19
2.3.1 Scale invariant estimation . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Obstacle avoidance requirements . . . . . . . . . . . . . . . . . 19

2.4 Anatomy of an error function . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Standard error vs mean error . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Usual error functions . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusion on error measures . . . . . . . . . . . . . . . . . . . . . . . 24

This chapter will first focus on the different strategies that can be used to estimate
the depth of an image. More specifically, depth from context and perspective will be
compared to depth from motion.

On the second part, depth quality evaluation will be discussed in the light of obsta-
cle avoidance context. This particular context will define our strategy on which quality
measure is more meaningful, in terms of both safety and path planning.

2.1 Linking depth with reality: the scale factor problem

Measuring depth from the images of a monocular camera is inherently up to a scale
factor. For example figure 2.1, when looking at a real castle or a much smaller model
replica, the camera frames will look the same, and only other context elements can help
estimate depth other than relatively with other pixels. This ambiguity is also appearing
with movement estimation, consistently with depth: a video will look exactly the same
when filming the real Chambord castle and translating by 10m, as filming the replica and
translating in the same relative direction by 33cm (since the replica is at 1/30-scale). It
does not mean we can’t make estimation, but that all the depth values will only be relative
to each other.

As a consequence, in order to get actual depth estimation, an absolute value is
needed to serve as an anchor point, a measurement from an other dedicated sensor.
The depth can then be deduced from the ratio between the estimated anchor value and
the measured one. Possible solutions are:
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Figure 2.1: Illustration of scale ambiguity. Aerial view of Chambord Castle and 1/30-scale
model replica at France Miniature1

• Measuring depth, at least in one point, with additional sensor such as LiDAR, Time-
of-Flight or stereo cameras. This is not a trivial solution and it needs embedded
integration, as well as precise calibration to link this measurement with the right
pixel in the picture plane.

• Assuming depth consistency across training and testing dataset. This can be par-
ticularly useful in datasets like KITTI, [Gei+13], where the camera is always at the
same height and looking at the floor from the same angle, but it is irrelevant on a
dataset with high pose variability, e.g. UAV videos, and such assumptions will fail.

• Measure movement magnitude, with dedicated sensors, e.g. IMU or GPS in a UAV,
or speed from wheels in a car, and compare it to estimated apparent movement,
provided both depth and apparent movement are consistently estimated. The re-
sulting ratio will be the scale factor.

The last solution is the preferred one, since movement estimation is a vital measure-
ment in the context of navigation, and thus is almost always available on a UAV.

Besides, as shown on appendix A, a potential error in displacement estimation will
also change the depth estimation, partially compensating the speed estimation error. For
example if the vehicle underestimates speed magnitude, the depth will also be underesti-
mated and the navigation strategy will try to avoid a potential obstacle more aggressively.

The drawback of this solution is that we need to estimate apparent movement, requir-
ing multiple frames and preferably static scenes, without moving objects.

2.2 Depth from motion vs depth from context

2.2.1 Depth from context advantages and limitations

Depth inference networks have been shown to be able to estimate depth solely from per-
spective and context. Indeed, with only one image, they were able to get reasonable
scale invariant quality measures [Fu+18; SCN08; EPF14; Zho+17]. It has been con-
sidered popular and convincing enough to develop its dedicated large scale challenge
[Uhr+17]. As said above, in a navigation context, the scale invariant quality is not really
interesting without a way to link the estimation to the real world.

1Sources: https://commons.wikimedia.org/wiki/File:ChateauChambordArialView01.jpg and
https://commons.wikimedia.org/wiki/File:France_Miniature_-_Ch%C3%A2teau_de_Chambord_(045)
_(17034171565).jpg, retrieved 07/24/2019

https://commons.wikimedia.org/wiki/File:ChateauChambordArialView01.jpg
https://commons.wikimedia.org/wiki/File:France_Miniature_-_Ch%C3%A2teau_de_Chambord_(045)_(17034171565).jpg
https://commons.wikimedia.org/wiki/File:France_Miniature_-_Ch%C3%A2teau_de_Chambord_(045)_(17034171565).jpg


Chapter 2. Depth estimation from a camera 17

Figure 2.2: Ames room, a famous exam-
ple of forced perspective, taken at Cité des
Sciences, Paris 2

Figure 2.3: Dakar 2019 photograph by
Frank Fife / AFP

As such, because it also estimates movement during training, Zhou et al. [Zho+17]
work can be achieved within a consumer drone context. It will be discussed and tested
in chapter 5. However, it is already fair to say that these estimations are reliable on a test
set similar to what it has been trained with, here KITTI [Gei+13].

Taking human perception as a reference, it has been shown [MBW04] that forcing
perspective to the human was well known and studied, especially in art for dramatic
effect. One of these techniques is Ames room. Figure 2.2 shows that the apparent
perspective is contradicted by the person’s size, the depth is thus different on the left and
on the right while it looks the same. This illustrates the fact that the projection of a point
P is not dependent to its distance to the camera, and highlights the lack of robustness of
depth from context that is done by the human eye when looking at a single frame. We
can extrapolate that a single frame depth network will suffer the same limitations.

One could argue that these counter examples of forced perspective are not really
realistic: if they were to be found unintentionally, the human would have been robust to
it. Figure 2.3 features a Dakar 2019 contestant, and an illusory cliff can be seen at first
glance before realizing the picture is in fact a high-angle shot (that the human eye is not
familiar with). This shows that confusing perspective can sometimes happen even with
realistic imagery.

The conclusion of these examples, is that depth from context is not robust to new
environments, and especially, depth error (even scale invariant) is not continuous with
respect appearance. Because of multi-stable perception [Eag01], large errors can even
be found in the very training set. As such, it means that a training set must be extremely
thorough, because a slight perturbation of appearance, like a change of lighting or orien-
tation might completely change the outcome. This would make a UAV depth from context
dataset very challenging to construct.

Besides, a depth estimator trained on this hypothetic dataset might have to remember
among all the possible perspective layouts in a particular image the most probable one
with experience, which means heavy memory tasks might be at stake. We can suppose
that a neural network dedicated to this task will probably have to be heavy and thus hard
to embed on a mobile system.

2Source: https://commons.wikimedia.org/wiki/File:Ames_room_forced_perspective.jpg, re-
trieved 3/28/2019

https://commons.wikimedia.org/wiki/File:Ames_room_forced_perspective.jpg
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2.2.2 Depth from motion advantages and limitations

Instead of depth from context, the depth from motion benefits from a possible training
but mostly from geometrical relations between structure and movement. As it will be
discussed on chapter 3, depth from motion only relies on how features are moved in the
frame. In the absence of rotation, we know that infinitely distant objects won’t move on
the image and that features with large displacement will represent close objects.

As such, depth error is more continuous to light and structure conditions, and we
predict that depth estimation will be more robust to unseen scenes. This suits both our
needs in term of lightweight estimator, not needing to remember every possible realistic
depth, and robustness, thus making dataset completeness requirements less vital.

Besides, this technique does not need to explicitly measure apparent displacement
magnitude like it was the case for depth from context to solve the scale factor. If every
depth from motion estimation is made with the assumption of a constant nominal speed,
the apparent speed is fixed and the scale factor will only be a function of actual speed
estimation from other sensors.

However, depth from motion is not robust to moving objects. The simplest example to
illustrate this is an object that would be moving along with the camera. Object’s relative
movement to the camera will be null and its distance will appear infinite.

In the context of obstacle avoidance, this could be mitigated by the fact that this is less
an obstacle since the relative movement is null. The time to collision, which is the time
needed for the camera to reach the obstacle, should both the camera and the obstacle
keep their relative motion constant, is infinite. However, knowing the actual depth value
instead of the time to collision is important as maneuvers take typically more distance at
high speed, making the best strategy dependent of the scene structure. This is a well
known effect in road safety where the security distance must be a constant proportion
of speed, regardless of actual relative motion [FB01]. Regarding a stopping distance
increasing non linearly with speed, like in the example of appendix A, this should even be
an increasing proportion of speed.

Considering other movement such as perpendicular motion relative to actual camera
path, optical flow anomalies could help detect the object as moving and then discard it
from the depth triangulation. However, depth of the moving object will be unknown and
the same scale ambiguity problem than with the whole rigid will be encountered: we either
need to know our relative motion to it, or have any idea of its typical depth based on its
appearance, if e.g. the moving object is an adult pedestrian, which gets back to all the
already discussed depth from context problems.

Being robust to moving objects is thus potentially challenging for depth from motion,
while it’s not the case for depth from context. Although we discuss possible solutions for
this particular problem at the end of this document, we chose to only consider rigid scenes
throughout the next chapters. The rationale is that solving the rigid scene subproblem
would be already a leap forward, and that in the context of UAV navigation where the
camera is often at a high altitude when moving fast, this can be enough for most cases.

2.2.3 Our strategy

From this quick analysis of our problem, we chose to focus on depth from motion. The
main reasons can be summarized to

• The context of heterogeneous stabilized aerial videos makes a harder use-case for
depth from context and appearance, and an easier case for depth from motion.

• Priority is given to robustness, which, as discussed above is problematic for depth
from context, given how easily even a system as evolved as the human can be
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Figure 2.4: Example of consecutive frames with a moving object in KITTI dataset
[Gei+13]

fooled with unusual but realistic images.

• The estimator network needs to be lightweight for a chance to be embedded in the
future, which seems more feasible with the lower level problem of feature movement
recognition required by depth from motion

2.3 Obstacle avoidance oriented depth quality

2.3.1 Scale invariant estimation

Before trying to estimate the depth of a particular scene, we must be able to measure
quality in the context of obstacle avoidance. More specifically, we must be able to take
good trajectory correction based on the information given by a particular depth map and
reasonable sensors.

For single frame networks, current depth quality measurements, originally introduced
by Eigen et al. [EPF14], expect a relative depth map up to a scale factor. This is a scale
invariant error measure, designed to evaluate the structure of the estimated depth rather
than its actual values, particularly suited for depth completion tasks for example.

This is however not suitable for navigation context, as they completely ignore the
scale factor uncertainty, and thus rely on estimating the scale factor as the ratio of the
medians of network’s output and ground-truth. This is then representative to an ideal use
case where the median of an unknown depth map has to be available, which is clearly
unrealistic.

Following our decision to estimate both depth and apparent movement from sec-
tion 2.1, we propose a new quality measurement, which depends not only on depth but
also on speed magnitude estimation by slightly modifying the already prevalent ones.
This new measurement is not relative anymore, it computes actual depth errors, and is
more representative of a real application case where velocity is available.

2.3.2 Obstacle avoidance requirements

The depth θ̃ from a particular estimator should give a reliable information in order to
make a trajectory decision. As such, there is a particular range of depth values whose
estimation needs to be precise.
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prior work [EPF14; Zho+17] Our proposition

Predictions Depth θ̃ Depth θ̃, Velocity ṽ

Ground Truth Depth θ Depth θ, Velocity v

Measure m = δ
(

θ, θ̃ × Me(θ)
Me(θ̃)

)
m = δ

(
θ, θ̃ × |v||ṽ|

)
Table 2.1: Me() is the median operator, and δ is a validation measure (e.g. L1 distance)

The obvious faulty case, is when an obstacle is thought to be farther than in reality,
which makes the UAV chose a trajectory that will lead to a collision. As a result, too
optimistic results in the validation set should be penalized in the range of maneuver of
the drone. Thus we don’t necessarily want depth to be of a constant precision until infinity,
the range of maneuver will depend on the obstacle avoidance strategy and specifications.
For our case of a relatively slow UAV (compared to e.g. a much faster military UAV) with
a typical max speed of 20m.s−1 it might not be important to get precise depth above a
maximum value, set here arbitrarily at 100m, and the closer depth will be to this maximum
value, the less precision will be required.

Also, in our particular use-case we must keep a trajectory close to the one initially
targeted, too pessimistic results should also be penalized because it will lead to unnec-
essary modifications of trajectory, resulting in a safe but inefficient flight.

The relative importance of depth overestimation (too dangerous) compared to under-
estimation (too conservative) is not clearly defined, but a depth estimator should at least
not be encouraged to be biased in one way or another if it was to be optimized for a
particular measure.

2.4 Anatomy of an error function

An error function f takes a depth map estimation θ̃ and its ground truth θ, and outputs a
positive scalar value. f (θ̃, θ) > 0. Obviously, when estimation is perfect, θ̃ = θ, the error
function is supposed to be 0.

An error measure E f of this error function on a particular validation set V is then the
mean of all the comparisons between estimation and ground truth.

E f =
1
|V| ∑

(θ̃,θ)∈V

f (θ̃, θ)

If the validation set is thorough enough, we can write this equation as a mathematical
expectation of the random variable f (θ̃, θ).

E f = E( f (θ̃, θ))

E f =
x

(θ̃,θ)∈R+2

f (θ̃, θ)× P(θ)× P(θ̃|θ)dθ̃dθ (2.1)

Since the mean is computed for all (θ̃, θ) pairs, regardless of θ values, this measure is
necessarily biased by the validation set distribution. If in a particular set the depth values
in a certain range are under represented, the resulting measure won’t reflect the actual
depth at this range.
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Figure 2.5: Maximum error probability guaranteed for standard and mean error. For
f ∈

[
ME, SE2

ME

]
, mean error gives more information. Above, standard error is the most

informative.

Standard error SE Mean error ME√
E f 2 =

√
E( f (θ̃, θ)2) E f = E| f (θ̃, θ|

P( f (θ̃, θ) ≥ α) ≤ SE2

α2 P( f (θ̃, θ) ≥ α) ≤ ME
α

Table 2.2: Comparison of standard and mean errors and corresponding maximum for
the tail distribution of f

It is thus very important to design a validation set V that fits our needs and the typical
depth values that we need to be precise on. For example, when considering a high speed
obstacle avoidance strategy, very low depth values might not be very important, since no
good strategy can be used in that context, even if the measurement is accurate.

2.4.1 Standard error vs mean error

For a particular error function f , there are generally two ways of computing statistics on
it. We can compute its mean, which we will call the mean error (ME) but we can also
compute the mean of its square value (MSE). Both of these techniques measure how
far from 0 the error f usually is, but the mean square error gives more priority to outliers.
However, the Bayesian error distribution is more restricted: with Markov’s inequality, we
can see we have more concentrated repartition of possible error values than with mean
error. (see table 2.2). The root of mean square error (sometimes called RMSE), which
we will call here standard error (SE) because of its proximity with standard deviation will
always be higher than mean error and thus give less information on lower possible error
values, but gives more guarantee on the possible outliers.

It can be seen figure 2.5 how these two ways of measuring an error are complemen-
tary, but when it comes to comparison, the preferred measure will depend on the obstacle
avoidance strategy. A more conservative system will prefer to minimize SE (standard er-
ror) over ME (mean error). In most cases, the mean error is given, because the distribu-
tion tail problems that are solved by standard error are often negligible in finite validation
sets, without infinite depth values. Unless specified otherwise, mostly to compare the
proposed algorithms with literature, we will use the mean error ME when measuring an
error function.
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2.4.2 Usual error functions

This section will try to cover usual error functions that are typically measured when eval-
uating a depth map estimation, not necessarily in the context of obstacle avoidance. Our
goal is to determine how informative an estimator is with a particular error evaluation
function. More specifically, we want to get an idea of θ Bayesian distribution given an
estimation θ̃ and an evaluation on a validation set V.

Absolute difference

The absolute difference is the simplest error function.

f (θ̃, θ) = |θ̃ − θ|

∀θ̃ ∈ R+, f (θ̃, θ) = α⇒ θ = θ̃ ± α

It can already be noted that these error functions don’t rely on the scale when com-
puting its mean, contradicting our desire of being more tolerant on high depth values.

Another simple problem raised by this is the dependence to the validation set’s actual
distribution. This is not necessarily problematic if the set’s distribution is well known, but
it should not be forgotten.

Relative difference

With the goal of penalizing errors in accordance to depth scale, the relative errors are
normalized by dividing by the ground truth values.

f (θ̃, θ) =
|θ̃ − θ|

θ
=

∣∣∣∣∣1− θ̃

θ

∣∣∣∣∣
∀θ̃ ∈ R+, f (θ̃, θ) = α⇒ θ =

θ̃

1± α

The major issue is how penalizing this error function is for over-estimations. In fact,
an error of 1 means that either the ground-truth is half the estimation or infinite. As such,
an estimator chosen on this measure will be encouraged to under-estimate depth values.

Proposition 1. Given an estimator e responsible for estimations {θ̃}, in a corresponding
validation dataset V = {(θ̃, θ)}, if the estimator is optimized for that validation set for a
mean relative difference error, it will have more under-estimations than over-estimations.

P(θ̃ < θ|(θ̃, θ) ∈ V) > 0.5

Corollarily, if we have an evenly balanced estimator {θ̃} such that P(θ̃ < θ|(θ̃, θ) ∈
V) = 0.5, then we can find α < 1 such that {αθ̃} is a better estimator according to mean
relative difference MRE.

See appendix B for a proof.
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Log difference

The two aforementioned error functions have an additional drawback because the dif-
ference (normalized or not) implies that compared values are spread on the whole real
spectrum, as if the distribution P(θ|θ̃) was a particular Gaussian with its mean on θ̃. The
log error on the other hand makes this assumption on the log of depth values.

f (θ̃, θ) =
∣∣∣log(θ̃)− log(θ)

∣∣∣ = ∣∣∣∣∣log

(
θ̃

θ

)∣∣∣∣∣
∀θ̃ ∈ R+, f (θ̃, θ) = α⇒ θ = θ̃ × e±α

This error has the advantage of being symmetrical, and penalizes 0 estimations as
heavily as +∞, which better reflects our ambition to avoid under-estimation and unnec-
essary security maneuvers. Besides, since it is only a function of the ratio between
estimation and ground truth, this measure is not tied to the validation set distribution the
way absolute difference was.

Precision error

The precision error, contrary to other loss we discussed is a statistic loss that gives a
proportion of outliers. Specifically, it cannot go outside of [0, 1]. Besides, it only tells
statistic for a specific error, here noted δ, and does not tell any information regarding the
distribution of the outliers, which could be all very close to the threshold δ or very far
without influencing this evaluation.

f (θ̃, θ, δ) = 1− 1θ̃∈[ 1
δ θ,δθ] =

{
0 if θ̃ ∈

[ 1
δ θ, δθ

]
1 otherwise

It’s easy to see that its expectation is in fact the proportion of outliers regarding the
threshold logarithmic error −log(δ).

f (θ̃, θ, δ) = 1∣∣∣log
(

θ̃
θ

)∣∣∣≥−log(δ)

PEδ = P

(
max

(
θ̃

θ
,

θ

θ̃

)
≥ δ

)

As such, these often used measures are a good way to characterize the logarithmic
error behavior, especially in the context of Bayesian inference. The delta values mea-
sured are typically 1.25, 1.252 = 1.56 and 1.253 = 1.95 [EPF14]. So their measure is a
proportion of estimation with more than 25%, 56% and 95% of error.

It is worth noting that the opposite of precision error is often preferred, simply preci-
sion. Optimizing for this particular measure is then maximizing the precision

Pδ = P

(
max

(
θ̃

θ
,

θ

θ̃

)
≤ δ

)

the optimal score being 1.
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Error Name Acronym Equation f (θ̃, θ)

Mean Absolute Error MAE E|θ̃ − θ|

Mean Relative Error MRE E
|θ̃−θ|

θ

Mean Log Error MLE E| log(θ̃)− log(θ)|

Standard Absolute Error SAE
√

E(θ̃ − θ)2

Standard Log Error SLE
√

E(log(θ̃)− log(θ))2

Precisions δ Pδ P
(∣∣∣log

(
θ̃
θ

)∣∣∣ ≤ log(δ)
)

Table 2.3: Considered Losses Summary

2.5 Conclusion on error measures

These different error functions and their respective means on a particular validation set
give a complementary view of different strengths and weaknesses. More specifically, the
absolute difference is a good performance index on the most represented depth values
of a validation set, relative difference (when performance is below 1) is a good indication
on depth over-estimation.

Throughout this thesis, we will use the different error measures summarized table 2.3
to characterize a depth estimator, but the logarithm error will be used when tuning our
algorithms, and especially the hyper-parameter search presented in chapter 4.
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Chapter 3

Creating a depth map with a
convolutional neural network
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This chapter is dedicated to investigate the capacity of Fully Convolutional Neural
Networks to perform regression tasks, or more specifically to compute the depth of a
stabilized image. As discussed before, depth for stabilized image is a too specific problem
to have a good dedicated literature. Our strategy is to put this problem in relation with
more general ones, and try to adapt their solutions to fit this problem’s specificity.

In a first part, we will define the framework of this task, with geometric definitions, and
especially the link between optical flow and depth map.
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Then, we will look at some Deep Learning solutions for a widely studied problem,
the optical flow problem. This would lead us to a first working solution, but with sensible
limitations, especially when considering navigation and obstacle avoidance.

We proposed a solution to overcome these, by asking the Network to infer depth
directly instead of deducing it from optical flow. This solution implies the creation of a
synthetic dedicated dataset.

Finally, we propose a more in depth review of a proposed network and its training
process, along with results both in synthetic and real images.

This chapter has been the subject to the following publication
[Pin+17a]: Clément Pinard, Laure Chevalley, Antoine Manzanera, and David Filliat.

“End-to-end depth from motion with stabilized monocular videos”. In: ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W3 (2017),
pp. 67–74. DOI: 10.5194/isprs-annals-IV-2-W3-67-2017. URL: https://www.isprs-
ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W3/67/2017/.

3.1 Geometric definitions

3.1.1 Camera plane

The camera plane describes the image pixels as a grid of 3D colors (Red, Green and
Blue). When considering our image to be of dimensions h× w, we can model the image
I as a vector field defined on a discrete plane Ω

Ω = ([0, w− 1]× [0, h− 1]) ∩Z2

card(Ω) = |Ω| = h× w
(3.1)

∀p = (u, v) ∈ Ω, I(p) = c = (c1, c2, c3)

The problem of depth generation is then to assign for each point of Ω a particular
depth value.

3.1.2 Pinhole camera model

The Pinhole camera model is a way of describing the mathematical relationship between
3D objects and their projection in the camera plane. This model is very appreciated for its
absence of distortion and in fact is readily usable on a wide number of cameras, be it from
a dedicated lens [Kin89] of from a software correction [Con19]. Thanks to this, systems
with a good image quality can be assumed to either provide directly a rectilinear image
as if it came from a pinhole, or at least a good calibration to make the virtual equivalent
image available at the cost of a rectification algorithm.

If we consider a camera with its coordinate system centered at the optical center of
its lens, a 3D point P = (x, y, z) will have the projected point p = (u, v) with the following
relation: {

u = u0 + fu
x
z

v = v0 + fv
y
z

(3.2)

With u0 and v0 the coordinates of the optical center in the projection plane, and fu and
fv the focal lengths. Note that with this thesis’ convention, we then get θ(p) = z. Besides,
p here is not necessarily on Ω: it can be out of bounds or not of integer coordinates.

Most of the time, fu and fv are very close and thus this model can be physically
approximated to a pinhole camera where every light ray only pass through one point

https://doi.org/10.5194/isprs-annals-IV-2-W3-67-2017
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W3/67/2017/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W3/67/2017/
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Figure 3.1: Illustration of a pinhole camera. the focal length is the depth of the box. 1

(discarding any diffraction phenomenon), illustrated figure 3.1. To get a more concise
notation, we can introduce the function Π, its pseudo-inverse Π−1, and the matrix K

Π : R3 → R2

P = (x, y, z) 7→ ( x
z , y

z )

Π−1 : R2 → R3

p = (u, v) 7→ (u, v, 1)

(3.3)

K =

 fu 0 u0

0 fv v0

0 0 1


Note that for an unoccluded 3D point P = (x, y, z), We have θ(Π(KP)) = z. We can

then rewrite equation 3.2 as

p = Π(KP)

If we want to get the 3D point from its image on the projection plane, we get:

P = θ(p)×K−1Π−1(p)

We can see how the depth is needed in order to figure the position of the 3D point.
Besides, the Π operation is scale-invariant.

∀α ∈ R+, Π(αP) = Π(P)

This illustrates the fact that the projection of a point P does not depend on its distance
(not to confuse with depth) to the camera, as said section 2.1.

3.1.3 Moving camera

If we suppose a moving camera, while our 3D point P stays motionless (the scene is
supposed rigid), we can now compute the new projection p2 of P.

The motion of our camera can be characterized by a rotation matrix R and a trans-
lation t from the second coordinate system to the first. It means that we consider the
inverse of the actual displacement of the camera. That way, we can express a direct

1source https://commons.wikimedia.org/wiki/File:Pinhole-camera.svg, retrieved 07/24/2019

https://commons.wikimedia.org/wiki/File:Pinhole-camera.svg
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transformation for 3D points in the first frame coordinate. For example if the camera is
going forward, the points will be closer and thus go backward, relatively to the frame
coordinate. The new relative position of P is then

P2 = t + RP = (x2, y2, z2)

We can then deduce the position of p2 in our projection frame

p2 = Π(KP2) (3.4)
p2 = Π (K(t + RP)) (3.5)

p2 = Π
(

KRK−1Π−1(p) +
Kt

θ(p)

)
(3.6)

Again, we can see how the position z = θ(p) is needed in order to know the position
of p2 from p. However, when both projected points p and p2 are known, we can try to
to figure out the depth value θ(p) thanks to this equation. Note that if the 3D point P is
chosen so that its projection p has integer coordinates (and more specifically p ∈ Ω), this
is not necessarily true for p2.

It is interesting to note how translation, given by t, and rotation, given by R are sepa-
rated in this equation. Besides, when considering a stabilized motion, i.e. with R equal to
the identity matrix.

p2 = Π
(

Π−1(p) +
Kt

θ(t)

)
(3.7)

3.1.4 Optical flow and disparity

Definition 1. The optical flow is the displacement of a point in the image plane between
two frames. It’s a vector field defined on Ω, associating a displacement vector for each
point in the image. For a particular set of point correspondences C = {(p, p2)} ⊂ Ω×R2

where each point p of Ω may only appear once in C, we have:

F : Ω → R2

p 7→ (Fu, Fv) = p2 − p

Definition 2. Disparity is the norm of optical flow.

D : Ω → R+

p 7→ ‖F(p)‖

Disparity is a term mostly coined for stereo vision. It is a special case of stabilized
pair where displacement is only lateral, with t = (tx, ty, 0). In that case, the 3D point
θ(p)Π−1(p) + Kt has the same depth value as p and the equation 3.7 becomes

p2 = p +
1
z
( fxtx, fyty)

As such, assuming fx = fy = f , optical flow is then F(p) = f
z (tx, ty), and disparity is

D(p) =
f

θ(p)
‖t‖

The value ‖t‖ is called the baseline in this case. When it is known, for example with
two cameras on a fixed rig, it is easy to deduce the depth of a particular point. Because
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Figure 3.2: A flow field with constant positive divergence, even if the value at the center
is a null vector. Figure taken from [HCC17]

of this simple relation for this particular case, the term disparity is abusively used to refer
to the inverse depth.

As such, it might be useful to remind that in other circumstances, disparity is not the
inverse depth up to a scale factor. This is important as both terms will be used in this
work.

Optical flow divergence

If we suppose optical flow F = (Fu, Fv) to be spatially differentiable, we can compute the
value

div(F) = ∇.F =
∂Fu

∂u
+

∂Fv

∂v

since F is only defined on Ω which is not continuous, we can approximate its diver-
gence with finite difference convolution for example.

div(F) = ST ∗ Fu + S ∗ Fv

where S =

 1
0
−1

 and ∗ is the convolution operation.

It can be geometrically interpreted as the magnification of the image objects. Positive
optical flow divergence stands for object appearing bigger in the second frame than in
the first, even if they did not move, see figure 3.2. As such, measuring the divergence of
optical flow is the same as measuring the zooming factor.

3.1.5 Focus of expansion

When considering a stabilized camera displacement t with tz 6= 0, we introduce the Focus
of Expansion (FOE) point, noted Φt, which is the projection of a virtual point with t as
coordinates.

Definition 3. Given a stabilized motion with translation t = (tx, ty, tz) a pinhole camera
with calibration matrix K, the focus of expansion is defined by Φt = Π(Kt)

This point is particularly interesting for stabilized motion, the resulting optical flow can
be expressed as simply a function of p, Φt and θ(p) and tz.
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F(p) = p2 − p (3.8)
= Π (Kt + θ(p)Π−1(p))− p (3.9)

=
1

θ(p) + tz
(tzΦt + θ(p)p)− p (3.10)

=
tz

θ(p) + tz
(Φt − p) (3.11)

This equation proves how closely optical flow is linked to FOE, and why its named like
that. We can see that the vector is strictly proportional to the vector that goes from p to
Φt. When going forward (which means tz < 0), every optical flow vector will be headed
away from FOE.

3.1.6 Finding depth from optical flow

In light of these different links between depth, we now have a first angle of attack to solve
our depth problem. By trying to computing optical flow, and assuming we know t with
external sensors, e.g. accelerometers (IMU) and GPS, we can deduce the depth map of
our first frame.

3.2 Deep learning for optical flow

Although very popular, optical flow is a very difficult computer vision problem and many
issues still remain unsolved, especially for some artifacts like motion blur or change of
exposition. Considering a deep learning solution, if older datasets can only serve for
evaluation purpose due to their size like the Middlebury dataset [Bak+11], some bigger
datasets can be used for training, be it from synthetic images with MPI Sintel [But+12]
(with complete ground truth) or from real images with KITTI [Gei+13] with sparse ground-
truth.

These datasets, although offering a training framework, were not sufficient to train a
network to fully encompass the optical flow operation, but rather the projection function
that could lead to feature maps to know if two pixels are referring to the same part in the
3D scene or not [ZK15; ZL16; Han+15]. That way, the optical flow is then found matching
the most similar pixels.

∀p ∈ Ω, F(p) = argmin
p′∈Ω

(d( f (I1, W)(p), f (I2, W)(p′)))

where f is the neural network outputting a feature map f (I, W) from an image I and
a set of trained weights W , and d is a distance function, possibly computed by another
neural network, performing a classification task to infer how similar are two feature map
pixels.

This sub-task might not need too much data to make a network converge, but lacks
flexibility compared to end-to-end training algorithms powered by even bigger dataset,
with synthetic purposely unrealistic images.

These datasets were proposed in order to get pretraining with a massive amount of
data like Flying Chairs [Dos+15], from which Figure 3.3 presents two examples, or Fly-
ingThings3D[N.M+16]. The main purpose is to propose a "pretraining" framework, and
then perform a fine-tuning on a smaller realistic dataset. That way, the network can
understand the global notion of optical flow with a pretraining and not only the feature
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Figure 3.3: Samples of Flying Chairs for Optical Flow training, with more than 22K frame
pairs with perfect ground-truth. Same color code as Middlebury dataset [Bak+11]

Figure 3.4: FlowNet general architecture for end-to-end optical flow generation, illustra-
tions taken from [Dos+15]

matching, and then specialize to a certain type of images as a fine-tuning. This is some-
what related to Curriculum Learning [Ben+09] and gets the same conclusion about the
network generalization.

3.2.1 FlowNet

One of the main network that particularly benefited from these very large datasets is
FlowNet [Dos+15], whose architecture is inspired from semantic segmentation networks
[LSD15] and presented figure 3.4. This architecture has been named with very different
names such as tiramisu [Jég+17], feature pyramid [Lin+17], U-Net [RFB15], and it con-
sists in a hourglass architecture, with skip connections with feature maps of the same
size. As such, we get a "projection" part, that computes feature maps with high se-
mantic level, and "refinement" part which concatenates up-sampled feature maps with
corresponding earlier convolution outputs, with information more closely linked to pixels
because it went through less strided convolutions.

This network is one of the first work that made possible a completely end-to-end train-



32 3.3. Optical flow for depth generation

ing of optical flow, and only simple convolution and transposed convolution operations
are done, with no geometry, smoothing or matching function involved anywhere. For its
simplicity despite its good results, we chose to study closely its usage and architecture
for our problem. One should note that the following study does not necessarily depend on
the architecture, and could be used with more sophisticated networks [Sun+18; Ilg+18],
although the simplicity of this architecture also guarantees a good flexibility when con-
templating the possibility of modifying its initial purpose or architecture.

3.3 Optical flow for depth generation

In this section we discuss the relation between depth and optical flow F coupled with
translation estimation t. Most importantly, we discussed how uncertainties for optical flow
and translation can lead to big errors in depth, even in the context of a stabilized camera
with a perfectly known displacement.

This navigation context can help us prioritize errors. To get the depth values of the last
image It we received from the stabilized camera, we need to get the optical flow of image
It compared to anterior frames It−∆t. As such, our convention of taking displacement
t matches the actual camera displacement: forward movement means positive forward
translation tz > 0. Our sensible use-case is forward movement: FOE is inside the frame,
and tz > 0.

3.3.1 From disparity to depth

Let us consider the norm of t, denoted tm (m stands for magnitude). We have t2
m =

t2
x + t2

y + t2
z. We also consider the optical center p0, given by p0 = (u0, v0). Finally, we

assume θ >> |tz|, since the opposite would mean objects potentially going behind the
camera.

From definition 3 of Φt, we can deduce that

t2
m = t2

z

(
1 +
‖Φt − p0‖2

f 2

)
|tz| =

f tm√
f 2 + ‖Φt − p0‖2

Besides, from Eq.3.8, we have

(θ(p) + tz)D(p) = |tz|‖Φt − p‖

θ(p) = |tz|
(
‖Φt − p‖

D(p)
− sign(tz)

)
(3.12)

In the end, we can deduce depth θ from disparity D, focal length f , FOE Φt and
translation magnitude tm

θ(p) =
f tm√

f 2 + ‖Φt − p0‖2

(
‖Φt − p‖

D(p)
− sign(tz)

)
(3.13)

This result is in a useful form for limit values. Lateral movement corresponds to
‖Φt‖ → +∞ and then

lim
‖Φt‖→+∞

θ(p) =
f tm

D(p)
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Figure 3.5: Percentiles of optical flow magnitude wise end point error (EPE) of our im-
plementation of flownet, tested on 100 images of Flying Chairs dataset. Mean EPE on
Flying Chairs is below 2 pixels.

On the other hand when Φt is inside the frame boundaries, when p → Φt, knowing
depth is a bounded positive value, we can deduce:

D(p) ∝
p→Φt

‖p−Φt‖

Limit of disparity in this case is 0 and we use its inverse. As a consequence, small
errors on disparity estimation will result in diverging values of depth near FOE while it
corresponds to the direction the camera is moving to, which is clearly problematic for
depth-based obstacle avoidance. Figure 3.5 illustrates how FlowNet errors behave with
respect to target optical flow magnitude, and especially the fact that null ground truth
optical flow can have great end point error, up to 10 pixels.

An other aspect of this equation shows that for a forward movement, sign(tz) = 1, and
thus disparity values can trigger a negative depth. This is expected as the dezooming
from apparent backward movement (since we compute a reversed optical flow to get
depth of last image) normally constraints the points to only get closer to the FOE while
not going across it: an infinite depth makes the point p motionless, while a null depth
moves the point to the FOE. As such, careless dense optical flow is almost guaranteed
to output negative near the FOE in our sensible use-case.

An other issue can be the error from the estimation of the FOE from translation. In-
deed, with a shifted Φt, depth in its true position will be infinite since there the disparity D
will be 0. This problem can however be partly solved when finding Φt analytically, since
every optical flow vector is supposed to be aligned with Φt (see equation 3.8).

∀p ∈ Ω, F(p)× (Φt − p) = 0

Where × is the 2D determinant.

3.3.2 From flow divergence to depth

If we consider inverse depth 1
θ to be spatially evolving slowly compared to optical flow, we

can deduce it from divergence of F:

div(F) =
tzdiv(Φt − p)

θ(p) + tz
=

−2tz

θ(p) + tz
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Here we are in a complementary situation: for lateral movement, tz is null, and so
is divergence of F, but for forward movement, this technique can be used around the
FOE [SRSP16; SK07]. Obviously this method will fail with a non-constant depth (and
thus a non-zero divergence), its use is more adapted for very close incoming obstacle
and urgent stop maneuver, when tz is of the same order of magnitude as z, and thus the
obstacle likely to get reached within a few frames.

3.3.3 Conclusions on limitations

Even though optical flow is considered well predictable from networks like FlowNet [Dos+15],
its relation to depth induces inevitable errors when the movement is random, and comput-
ing depth from disparity is much harder than for a classic stereo rig. Some earlier works
already enlightened the difficulty in estimating depth solely with flow [SK07; Zin+10],
especially when the camera is pointed toward movement. One can note that rotation
compensation was already used with fish-eye camera in order to have a more direct link
between flow and depth.

Methods based on optical flow divergence can help around the FOE area, but are far
from perfect, especially when a fine long range depth estimation is needed.

3.4 End-to-end learning of depth generation

From last section findings, we decide to study the possibilities in learning depth solely
from a neural network.

We then focus on RGB-D datasets that would allow supervised learning of depth.
RGB pairs (preferably with the corresponding displacement) being the input, and D the
desired output. Our choice today to learn depth from motion in existing RGB-D datasets
is either unrestricted w.r.t. ego-motion [Fir16; Stu+12], or a simple stereo vision, equiv-
alent to lateral movement [GLU12; SS02]. To our knowledge, no dataset proposes only
translational movement.

An interesting work on a structure from motion network has been published and con-
siders several IMU-enabled datasets [Umm+17]. The network, called DeMoN tries to
get structure from a pair of images, but not necessarily stabilized. As such, several of
these datasets could be used for our network, performing an online stabilization from
IMU so that we would be back in our original use-case [XOT13; Stu+12; Aan+16]. This
is definitely an interesting solution, but a careful read of their article however enlightens
the necessity of large synthetic datasets for their training in addition to these realistic
datasets, named BlendSwap and Scenes11 (which don’t have a dedicated publication).
For each part of the network, it follows the curriculum learning workflow, training on a
large unrealistic dataset before fine-tuning on a smaller harder real one: the joint training
using all datasets at the same time was probably motivated by their validation set that
includes samples from different datasets, and thus needs to stay robust, at the cost of not
being specialized for a particular situation.

Another problem when considering leveraging from this work is that these datasets
are all very suited for the "multi view synthesis" problem, where the general movement
of the camera is to rotate around a subject in order to scan it. This is then not very
representative of an obstacle avoidance context, with camera going forward and not only
sideways.
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StillBox Dataset
image size number of scenes total size (GB)
64x64 80K 19
128x128 16K 12
256x256 3.2K 8.5
512x512 3.2K 33

Table 3.1: Datasets sizes

Scenes parameters
camera field of view 90o

max render distance 200m
primitives number 20

texture ratio 0.5
size range of mesh objects (m) [0, 2]

distance range of mesh objects (m) [0, 25]
displacement between two consecutive frames 10cm

scene length (frames) 10
nominal shift 3

speed equivalent (for 30fps) 9m.s−1

Table 3.2: StillBox dataset parameters

3.4.1 Introducing StillBox, a depth synthetic dataset

In light of available literature for stabilized RGB-D datasets, we propose a new dataset
which aims at proposing a suited environment for our navigation context: stabilized videos
or perfectly known orientations, random movements, and random scenes.

This dataset has been shared with the scientific community and is available to down-
load at http://stillbox.ensta.fr.

We called this dataset StillBox.
For this dataset, we used the rendering software Blender 2 to generate an arbitrary

number of random rigid scenes, composed of basic 3d primitives (cubes, spheres, cones
and tores) randomly textured from an image set scrapped from Flickr 3 (see figure 3.6).

These objects are randomly placed and sized in the scene, so that they are mostly
in front of the camera, with possible variations including objects behind camera, or even
camera inside an object. Scenes in which camera goes through objects are discarded.
To add difficulty we also applied uniform textures on a proportion of the primitives. Each
object thus has a uniform probability (corresponding to texture ratio) of being textured
from a color-ramp and not from a photograph, along with a random size and position
uniformly sampled from specified ranges.

Walls are added at large distances as if the camera was inside a box (hence the
name). The camera is moving at a fixed speed value, but to a random direction (uniform
distribution), which is constant for each scene. It can be anything from forward/backward
movement to lateral movement (which is then equivalent to stereo vision). Tables 3.1 and
3.2 show a summary of our scenes parameters. They can be changed at will, and are

2https://www.blender.org/, retrieved 07/24/2019
3https://www.flickr.com/, retrieved 07/24/2019

http://stillbox.ensta.fr
https://www.blender.org/
https://www.flickr.com/
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Figure 3.6: Some examples of our renderings with associated depth maps, from 0 to
100m. Visible reticle is not comprised in raw images
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stored in a metadata JSON file to keep track of it. Our dataset is then composed of 4
sub-datasets with different resolutions, 64px dataset being the largest in term of number
of samples, 512px being the heaviest in data.

The parameters described here present the version of this dataset we open sourced.
However, thanks to the fact that we constructed it ourselves, we are able to generate very
quickly a new dataset with custom camera properties such as focal length, image size or
movement, potentially with rotation if we want to simulate a bad stabilization.

3.4.2 Dataset set augmentation

The way we store data in 10 images long videos, with each frame paired with its ground
truth depth allows us to set a posteriori distances distribution with a variable temporal
shift between two frames. A shift of 1, which means two consecutive frames, will have a
lower temporal distance than a shift of 10 (the maximum shift in our dataset). If we use
a baseline shift of 3 frames, we can e.g. assume a depth three times as great as for two
consecutive frames.

In addition, we can also consider negative shift, which will only change displacement
direction without changing speed value compared to opposite shift. This allows us, given
a fixed dataset size, to get more evenly distributed depth values to learn, and also to de-
correlate images from depth, preventing any over-fitting during training, that would result
in a scene recognition algorithm and would perform poorly on a validation set.

3.5 DepthNet, a depth fully convolutional neural network

Now that we have a dataset that mimics UAV navigation, we can train a network to get
depth from motion. This network is very inspired from FlowNetS presented in previous
section 3.2.1.

3.5.1 The constant speed assumption

The network will accept two images I1 and I2 as input, and will output a depth map θ
relative to I2. We want a network that assumes a constant displacement between frames.
This will have two advantages:

• The way we augment the dataset, depth will be linked to apparent motion. For
example if I1 = I2 the depth output by the network should be infinite.

• We make the assumption that since this constant speed assumptions makes depth
very closely linked to disparity, a network performing well on optical flow will be a
good candidate for depth.

3.5.2 On the optimal network output

As mentioned by authors of DeMoN [Umm+17], inverse depth might be a good value for
our network to output, because its value is more linked to disparity. Besides, it gives less
importance to far objects, which might be a good strategy to have good relative error such
as MRE and MLE (see section 2.4.2)

The major problem with this approach is that it does not provide an "optimal" depth
on which the network should be the most reliable: the closer an object is, the more
contrasted output values the network should have, and thus the more weights in the
network should be dedicated to this depth distribution. In our case, betting on close
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Outputting method Regular depth Inverse depth Log Depth

Loss function L |Out(p)− θ(p)|
∣∣∣Out(p)− 1

θ(p)

∣∣∣ |Out(p)− log(1 + θ(p))|

Inverse Post processing IPP(θ(p)) = θ(p) IPP(θ(p)) = 1
θ(p) IPP(θ(p)) = log(1 + θ(p))

Post processing θ̃(p) = Out(p) θ̃(p) = 1
Out(p) θ̃(p) = exp(Out(p))− 1

Table 3.3: Comparison of three possible depth representations for the network output

objects is probably not optimal in order to be able to avoid obstacles long before we
reach them. We need to choose a more suiting hierarchy: our preferred depth quality
measurement being the logarithmic error, we test three separate outputting methods,
presented table 3.3: regular depth, inverse depth, logarithmic depth. Each method gets
as a training loss the L1 difference between the outputting method and its corresponding
ground truth. We thus need to design a post processing function to get the actual depth
from the network output, and an inverse post processing function to get the value with
which the network output will be compared for each loss function.

3.5.3 General structure

Our network is described figure 3.8. As mentioned above, this network architecture has
been proven very efficient for flow and disparity computing while keeping a very sim-
ple supervised learning process. The main point of this experimentation is to show that
end-to-end depth estimation can be beneficial regarding unknown translation. In the
general effort of having a simple network that motivated our choice of inspiration from
FlowNetS in the first place, all convolution are now 3× 3 kernels, even the first ones that
are 7× 7 and 5× 5 in FlowNetS, and activation functions are simple ReLU[KSH12] in-
stead of LeakyReLU [Sch15]. Most importantly, our architecture differs from FlowNetS
by its width, where each layer has half the feature maps. These simplifications makes
DepthNet a relatively light network (at least 4 times lighter than FlowNetS) with only stan-
dard computation blocks for a facilitated potential mobile deployment. The motivation for
a thinner network also relies in the fact that a stabilized footage offers a much simpler op-
tical flow pattern, as shown in equation 3.8. It can be noted that we added Spatial Batch
Normalization[IS15] in the convolution blocks to ease training (see figure 3.9), knowing
that it can easily be replaced by simple addition and multiplication during the inference.
Note that the "OutN" convolutions before the "1+ELU" activation functions neither have
BatchNorm nor ReLU, and the "Up OutN" don’t have BatchNorm.

The ELU trick

For final output, we use the activation function "1 + ELU" [CUH15]. It outputs only values
above 0, which is to be expected, but unlike the ReLU, we avoid the null gradient when
raw network output (before the activation function) is below zero. Besides, 1+ELU is still
very close to a ReLU: it only differs for output values below 1, and could be replaced by
a simple shifted ReLU (x 7→ ReLU(x + 1)) for inference if needed and applicable, ie with
regular depth. See figure 3.7 for a graphic comparison. Functions are exactly the same
above y = 1, meaning that in our dataset, the difference will almost always be negligible.

1 + ELU : R → R+

x 7→
{

1 + x if x > 0
ex else
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Figure 3.7: Comparison between "1+ELU" and "ReLU(1+x)", functions and derived func-
tions

3.6 Training details

Like for FlowNetS with optical flow, we use a multi-scale criterion, with a L1 reconstruction
error for each scale.

Loss = ∑
s∈scales

γs
1
|Ω| ∑

p∈Ω
|Outs(p)− IPP(θ(p))|

where

• Outs is the output map at scale s of the network, upscaled bilinearly to match di-
mension of θ. Note that depending on the post processing function, this is not yet a
depth map per se.

• IPP is the inverse post processing function. (See 3.5.2)

• γs is the weight of the scale, we arbitrarily chose higher weights for higher scales:
(γs)2≤s≤6 = [0.32, 0.08, 0.02, 0.01, 0.005] for s varying from 2 (highest scale) to 6 (low-
est scale)

• θ is the depth ground-truth.

As said earlier, we apply data augmentation to the dataset using different shifts, along
with classic methods such as flips and rotations. We also clamp depth to a maximum of
100m, and provide sample pairs without shift, assuming its depth is 100m everywhere.
We use a stochastic gradient descent algorithm with a momentum of 0.9. The learning
rate varies from 10−3 to 10−2, depending on the post processing function.

We used the framework PyTorch [Pas+17], the full source code is available on Github4,
along with the StillBox dataset.

3.6.1 Influence of resolution on training

The special case of 64x64 images

Figure 3.10 shows results from 64px dataset. Like FlowNetS, results are down-sampled
by a factor of 4 and up-sampled to 64x64 with bilinear interpolation, just like during train-
ing.

One can notice that although the network is still fully convolutional, feature map sizes
go down to 1x1 and then behave exactly like a Fully Connected Layer, which can serve
to figure out implicitly motion direction and spread this information across the outputs.

4https://github.com/ClementPinard/DepthNet, retrieved 07/24/2019

https://github.com/ClementPinard/DepthNet
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Input image pair Ground Truth Depth
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Figure 3.8: DepthNet structure parameters
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Typical Conv Module Typical Deconv Module

Input

Convolution 3x3

Spatial BatchNorm

ReLU activation

Output

Input

Transposed Convolution
4x4, stride = 2

Convolution 3x3

Spatial BatchNorm

ReLU activation

Output

Figure 3.9: General Structure of convolution and deconvolution blocks of DepthNet.

Image 1 Image 2 Ground Truth θ Estimation θ̃

Figure 3.10: Qualitative results of DepthNet for 64x64 images. FOE is indicated by a red
cross on Image1 and Image 2
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Outputting method MAE MRE MLE
Identity 4.72 0.26 0.32
Inverse 16.26 0.81 0.62
Log 6.91 0.37 0.28

Table 3.4: Quantitative results for 64x64 images.

Network MEA MRE MLE
FlowNetS64 5.72 0.363 0.276
DepthNet64 4.72 0.261 0.323
DepthNet64→128 3.70 0.266 6.30
DepthNet64→128→256 2.70 0.209 0.174

FlowNetS64→128→256→512 2.26 0.167 0.142
DepthNet64→128→256→512 2.12 0.168 0.142
DepthNet64→512 2.39 0.177 0.150
DepthNet512 3.85 0.317 0.213

Table 3.5: quantitative results for depth inference networks. FlowNetS is modified with 1
channel outputs (instead of 2 for flow), trained from scratch for depth with Still Box

The second noticeable fact is that near FOE, the network has no problem inferring depth.
It means that it uses both optical flow divergence and interpolates with neighbor depth
values, where disparity is easier to measure.

This can be interpreted as 3D shapes identification, along with their magnification:
pixels belonging to the same shape are deemed to have close and continuous depth
values, resulting in a FOE-independent depth inference. Figure 3.11 shows the depthwise
relative error. While quality is not optimal at very low depth (and thus high displacement),
the network is very precise even at very high depth. A relative error of 0.2 at depth of 90
means that the equivalent error on pixel displacement is less than 0.2× f×0.3

90 = 0.02pixels.
The error peak at 12m can be interpreted by the fact that most objects (and thus the
scene’s main source of diversity and estimation noise) are between 10 and 20 meters. It
can be also reinforced by the fact that bilinear interpolation of our network’s output (which
is downscaled by a factor of 4) typically presents a constant slope at depth discontinuities,
resulting in high error at object borders.

Table 3.4 shows quantitative results on a validation set with our three different post
processing functions. It can appear surprising that in the end, inverse depth is clearly
not the most efficient, especially when knowing that literature almost always tries to learn
disparity (in the case of stereo vision) or inverse depth. Its poor results here can be
explained by the mean disparity which is very low on our dataset and thus the L1 Error is
too noisy. This result is thus particularly interesting for low disparity cases, where learning
the inverse of disparity might be more efficient than learning it directly. As an example,
we can cite the dataset CHairSDHorn, published with FlowNet2 [Ilg+16] which features
small displacements.

For our two other losses, results are somewhat comparable. For sake of simplicity, we
keep the identity post processing.
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Figure 3.11: Median depthwise metric, relative and logarithmic errors of DepthNet on
64x64 images with Identity post processing. Shaded areas are delimited by first and third
quartiles.

Image 1 Image 2 Ground Truth θ Estimation θ̃

Figure 3.12: Qualitative results of finetuned DepthNet64→128→256→512 for 512x512 images.
FOE is indicated by a red cross on Image 1 and Image 2
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Network size
980Ti

Quadro
M1000M

TX1

1 8 1 8 1 8
DeMoN 48.0 11 4.8 N/A N/A N/A N/A
FlowNetS64 39.4 225 153 86 41 27 14
DepthNet64 7.33 364 245 213 88 70 40
FlowNetS512 39.4 69 8.8 15 N/A 2.8 N/A
DepthNet128 7.33 294 118 205 74 51 15
DepthNet256 7.33 178 36 144 29 39 3.2
DepthNet512 7.33 68 8.8 58 8.2 9.2 N/A

Card model GFLOPS (FP32) Memory (GB)
GTX 980Ti 5, 632 6
Quadro M1000M 1, 390 2
Tegra X1 512 8

Table 3.6: Size (millions of parameters) and Inference speeds (fps) on different devices.
Batch sizes are 1 and 8 (when applicable). A batch size of 8 means 8 depth maps are
computed at the same time. DeMoN was tested only on a 980Ti. On the second table, a
quick comparison between tested GPUs

From 64px to 512px Depth inference

One could think that a fully convolutional network such as ours can not solve depth ex-
traction for pictures greater than 64x64. The main concern is that for a fully convolutional
network, each pixel is applied the same operation. For disparity, this makes sense be-
cause the problem is essentially similarity from different picture shifts. However, for depth
inference when FOE is not diverging (forward movement is non negligible), result from
equation 3.13 apparently shows that once the FOE is known, we then get different op-
erations to do depending on distance from it and from the optical center p0. The only
possible strategy for a fully convolutional network would be to compute the position in the
frame as well and to apply the compensating scaling to the output.

This problem then seems very difficult, if not impossible for a network as simple as
ours, and if we run the training directly on 512x512 images, the network fails to converge
to better results than with 128x128 images while better resolution would help getting more
precision. However, if we take the converged network and apply a fine-tuning on it with
512x512 images, we get much better results. Figure 3.12 shows training results and
shows that our deemed-impossible problem seems to be easily solved with multi-scale
fine-tuning. As Table 3.5 shows, best results are obtained with multiple fine-tuning, with
intermediate scales 64, 128, 256, and finally 512 pixels. Subscript values indicate fine-
tuning processes. FlowNetS is performing comparably to DepthNet while being 5 times
heavier and most of the time much slower, as shown Table 3.6.

3.6.2 Comparison with DeMoN and depth from optical flow

To show that a network dedicated to output depth map on stabilized videos can outper-
form more traditional methods, we compare our network to two methods:

• A mixture of FlowNetS and depth from optical flow (not to be confused with FlowNetS
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Method MAE MRE MLE
DepthNet 2.67 0.162 0.132
FlowNetS→ depth 6.462 0.203 0.172
DeMoN 18.85 1.57 0.726

Table 3.7: Quantitative comparison between the three methods. FlowNetS→ depth row
is deducing depth from optical flow and displacement (perfectly known)

trained for depth used section 3.5) . FOE is supposed perfectly known. FlowNetS
is finetuned for optical flow on still box.

• DeMoN network, which is supposed to work on any movement. But as discussed
above, DeMoN might be more specialized on lateral movement, and not forward
movement. Because of its heaviness which makes it unsuitable for light embedded
integration, we did not take the time to fine-tune DeMoN on still box. The main
point of comparing with DeMoN is to show that even though its inner architecture
is based on optical flow, depth does not diverge near FOE. This is most probably
thanks to the refinement network that regularizes the optical flow map and outputs
a plausible depth map instead of deducing it geometrically from optical flow.

For this comparison, and because DeMoN which we don’t retrain is supposed to work
on a specific set of intrinsic parameters, we constructed a new still box dataset for fine
tuning and validation that matches DeMoN’s expected intrinsics. In order to help DeMoN,
which might confuse translation and rotation while we know there is none, we feed the
iterative network the right rotation (null) instead of the estimated value.

Figure 3.13 compares the three methods on a scene with lateral movement, and a
scene with forward movement. We can see how near FOE, depth diverges for depth from
optical flow.

Table 3.7 displays quantitative quality of these three methods. As both depth from
FlowNet and DeMoN can output negative value that would result in an infinite log error,
we clamped the depth to be between 0.1 and 100.

Finally, figure 3.14 shows the error with respect to distance to FOE. As shown, the
depth from optical flow method, although with a better average score than DeMoN has
poor values near FOE. This is an important result as it shows that even for optical flow
based network like DeMoN, a refinement step makes it possible to output a better qual-
ity depth map near FOE. This shows that a depth from optical flow is salvageable with
enough refinement.

3.7 UAV navigation use-case

Figure 3.15 shows qualitative results from our validation set, and from real conditions
drone footage, on which we were careful to avoid camera rotation. These results did
not benefit from any fine-tuning from real footage, indicating that our Still Box Dataset, al-
though not realistic in its scenes structures and rendering, appears to be already sufficient
for learning to produce decent depth maps in real conditions, the same way FlowNetS
trained Flying Chairs [Dos+15] dataset did get decent results on more realistic optical
flow datasets, like MPI Sintel [But+12] and KITTI [Gei+13].

We trained depth estimation from a moving camera, assuming its velocity is always
the same. When running during flight, such a system can easily deduce the real depth
map from the drone displacement magnitude t, knowing that the training speed was V0
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Img 1 Img 2 Ground Truth
distance to FOE
‖Φt − p‖

DeMoN [Umm+17] FlowNet [Dos+15] DepthNet

Figure 3.13: Qualitative comparison between DeMoN [Umm+17], FlowNet [Dos+15] and
DepthNet.
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Figure 3.14: Depth errors with respect to distance to FOE on our test set. Contrary to
FlowNet, DepthNet and DeMoN do not depend on it

Figure 3.15: some results on real images input. Top is from a Bebop drone footage,
bottom is from a gimbal stabilized smartphone video.
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Figure 3.16: Example of depth flickering for the sky. The two frames are ≈ 83ms apart.

(here 9m.s−1)

depth(t) =
Vt

V0
DepthNet( f ramet, f ramet−1) (3.14)

One of the drawbacks of this learning method is that the f value (which is focal length
divided by sensor size per pixel) of our camera must be the same as the one used in
training. Our dataset creation framework however allows us to change this value very
easily for training. One must also be sure to have pinhole equivalent frames like during
training.

However, since the network is fully convolutional, the inference will work as long as
the focal length is the same. More specifically, this is supposed to be robust to optical
center errors.

Figure 3.16 shows a typical failure case, where the sky is thought to be a very close
object. This shows that although already decent on real videos, out network is proba-
bly over-fitted on typical StillBox images, even if it was designed with diversity in mind.
More specifically in this case, we suspect a small defect on frame stabilization, which the
network never had to be robust with when training on StillBox.

3.8 Conclusion of this chapter

We proposed a novel way of computing dense depth maps from monocular image se-
quences, along with a very comprehensive dataset for stabilized footage analysis. This
algorithm can then be used for depth-based sense and avoid algorithm in a very flexible
way, in order to cover all kinds of path planning, from collision avoidance to long range
obstacle bypassing.

The proposed network outperforms more general depth from motion algorithms, and
is yet very simple with only convolutions, transposed convolutions and ReLU activations.

We now have a very powerful pretraining for depth, the same way Flying chairs
[Dos+15] was for Optical Flow. The next chapter will cover the ways of fine-tuning this
network in order to perform well on real videos, and especially how to leverage videos
without ground-truth depth thanks to photometric reprojection based training.
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Training Depth estimation with
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4.1 Motivations

This chapter aims at studying the possibilities of learning depth without ground truth.
This is one of the logical further steps after having shown how a neural network can learn
robust depth inference from a supervised training.

Indeed, our network could probably be enhanced by training on real images instead
of our unrealistic still box dataset. To do so, one could use supervised learning to train a
system for depth from vision on an offline dataset featuring explicit depth measurement,
such as KITTI [Gei+13]. However, even setting up such recording devices can be costly
and time demanding, which can limit the amount of data the system can be trained on.

One could also try to set up a synthetic but realistic dataset using state of the art game
engines and assets [Sha+17]. Unfortunately, this solution could potentially lack diversity,
as assets such as 3D scenes are not easy to setup and require human assumptions on
what makes a rendering realistic.

The ground-truth-less learning solution, although more difficult in terms of designing
a loss function, would have the huge advantage of not needing any sort of preprocessing.
As a consequence, extending a dataset of training images would only require to capture
them and directly add them to training database.

4.1.1 Training depth networks without ground-truth

Most recent works on autosupervised training networks for computing depth maps use
differentiable bilinear warping techniques, which we will talk about in first section, first in-
troduced in [JSZ+15]. The main idea is trying to match two frames using a depth map and
a displacement. The new loss function to be minimized is the photometric error between
the target frame and the projected one. Depth is then indirectly optimized. Although
sensitive to errors coming from occlusions, non Lambertian surfaces and moving objects,
this optimization shows great potential, especially when considering how little calibrated
data is needed.

For instance [GMB17; Gar+16; XGF16] use stereo views and try to reconstruct one
frame from the other. This particular use case for depth training allows to always consider
the same displacement and rigid scenes since both images are captured at the same
time and their relative poses are always the same. However, in addition to having a fixed
displacement, with its already discussed depth range limitations, it constrains the training
set to perfectly rectified stereo rigs, which are not as easy to set up as a monocular
camera.

When trying to estimate both depth and movement, [Zho+17; YS18; MWA18; Ran+18]
also achieved decent results on completely unconstrained ego-motion video. One can
note that some methods [Zho+17] are assuming rigid scenes although the training set
does not always conform to this assumption. The other ones try to do without this as-
sumption by computing a residual optical flow to resolve the uncertainty from moving
objects.
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[Vij+17] explicitly considered non rigid scenes by trying to estimate multiple objects
movements in the scene, to begin with the motion of the camera itself, which allowed
them to deduce a flow map, along with the depth map.

4.1.2 Outline of this chapter

This chapter is dedicated to present as thoroughly as possible the main ideas between
frame reprojection, and the existing related techniques in literature. This study will help
us evaluate several extensions to the initial reprojection optimization before taking it to a
full size deep learning workflow.

1. Core concept will be presented section 4.2, with inverse warp, pixel wise differenti-
ation and optimization.

2. We will then discuss section 4.3 the depth optimization problem as a set of frame
reprojection photometric errors to minimize in a particular scene, along with the
SFMLearner[Zho+17] use-case.

3. On section 4.4, Smooth constraints, inspired from optical flow regularization will be
here studied on inverse depth. A general smooth loss expression will be considered,
along with several popular smooth losses which are in fact variations of the general
form.

4. The occlusion problem will be addressed section 4.5. We call into question existing
solutions in literature and propose an analytical alternative.

5. We will construct section 4.6 a toy problem designed to be challenging for these
presented techniques, despite its size of only two scenes.

6. Finally, we will present section 4.7 several extensions to the initial photometric loss
used for reprojection optimization

Moreover, a collection of notebooks to recreate this chapter figures are available on-
line 1.

4.2 Core concept for reprojection based optimization

The key feature of unsupervised depth training is the integration of images in the gradient
propagation workflow. As a consequence, for any point p ∈ R2, we must be able to
compute the gradients of I(p) with respect to p coordinates.

4.2.1 The image as a continuous 2D function

As in chapter 3, we consider an image I as a function that maps from integer values in
Ω, defined eq 3.1 to channel luminance [0, 255]3.

Ω = ([0, W − 1]× [0, H − 1]) ∩Z2

cardinal(Ω) = |Ω| = H ×W

1https://gitlab.ensta.fr/pinard/thesis-notebooks and https://gitlab.ensta.fr/pinard/
direct-warper, retrieved 07/24/2019

https://gitlab.ensta.fr/pinard/thesis-notebooks
https://gitlab.ensta.fr/pinard/direct-warper
https://gitlab.ensta.fr/pinard/direct-warper
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∀p = (u, v) ∈ Ω, I(p) = c =

 c1

c2

c3


Our current problem is to extend our image in the whole 2d plan R2. More specifically,

we want to be able to compute for any point p = (u, v) ∈ R2 the following values:

I(p)

∇I(p) = ∇p I(p) =

[
∂I
∂u
∂I
∂v

]

That way, we will be able to tell the variation of the function I according to p and use
it in an gradient retropropagation workflow. Here, we present the bilinear interpolation,
which is the one used in Spatial Transformer Networks (STN) [JSZ+15].

First, if we consider the image size, the image function I can be extended to Z2, by
setting its value arbitrarily outside of size limitations. Depending on conventions, it can
be:

1. I(p) = 0, this is used when sampling an isolated point outside of Ω, in order for
gradient to be null.

2. I(p) = I(q), q = arg min
q∈Ω

(‖p− q‖), this is used when computing image gradient at

image boundaries.

Interpolation can then extend the function to R2 by finding possible values between
integer positions. Several interpolations techniques can be used, such as nearest or
bicubic.

The bilinear interpolation on which we focus on tries to find the quadratic function
fi,j : [0, 1]2 → R3 between 4 adjacent points as shown in figure 4.1, that solves the
equations related to these points, where value is known.

f p=(i,j)∈Ω : [0, 1]2 → R3

(u, v) 7→ I(p) + u∂x I + v∂y I + uv∂xy I

Where

∂x I = I(i + 1, j)− I(p)
∂y I = I(i, j + 1)− I(p)

∂xy I = I(p) + I(i + 1, j + 1)− I(i + 1, j)− I(i, j + 1)

The extended image function is then the piecewise function composed of all different
quadratic solutions to the systems stated above.

I : R2 → R3

(u, v) 7→ fbuc,bvc( f rac(u), f rac(v))

where f rac is the fractional part defined as x− bxc for x ∈ R.
One should note that this function is continuous everywhere and almost differentiable

everywhere, but it’s not a C1 function, gradient generally has discontinuity when approach-
ing plim ∈ (R×Z)∪ (Z×R). Besides, it can be shown that wherever defined, Laplacian
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Figure 4.1: Illustration of bilinear interpolation on the unit square. The four corners have
fixed z values as indicated in the figure, the values in between are interpolated, and the
interpolated values are represented by the color. 2

is 0 everywhere. As discussed later, for these values to be computed on Ω, and espe-
cially when trying to optimize them, we will use the scale space representation [Lin96],
which makes the picture C+∞ everywhere, but has a blurred representation of I.

From now on, for the sake of compact notation, we will consider any 2D function on Ω
to be a differentiable function, and for any image I , the notation I(p) with p = (u, v) ∈ R2

will implicitly refer to the bilinear interpolation extension of this image.

4.2.2 Optical flow and reprojection based optimization

Thanks to its differentiability, an optimization by gradient descent can be applied to the
bilinear interpolation of an image. For a particular color value c in R3, one can try to find
the optimal p coordinates where p = arg min

p
{‖I(p)− c‖}.

An extension to this simple optimization is to consider an array of points to retrieve
from one image It to another It+1. Indeed, each point to retrieve is defined as a color that
is assumed to be the same in the other image. This optimization then tries to compute
optical flow F.

∀p ∈ Ω, It+1(p + F(p)) = It(p)

∀p ∈ Ω, F(p) = arg min
q∈R2
‖It(p)− It+1(p + q)‖ (4.1)

Note that optical flow F, similarly to images is a 2D function defined on Ω, thus all
aforementioned notations can be used, including interpolation. In practice, the optimiza-
tion tries to minimize the following photometric loss, defined by Lp.

Lp = ∑
p∈Ω

d (It(p), It+1 (p + F(p)))

where d is a distance function such as L1 distance.

By using gradient descent, we then get for each coordinate F =

[
F1

F2

]
of our optical

flow

∀p = (i, j) ∈ Ω, ∂tF(p) =

 ∂tF1(p)

∂tF2(p)

 = −

 ∂Lp
∂F1

(p)
∂Lp
∂F2

(p)


This equation can be more generally written as:

2Source: https://commons.wikimedia.org/wiki/File:Bilininterp.png, retrieved 07/24/2019

https://commons.wikimedia.org/wiki/File:Bilininterp.png
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∂tF = −∇FLp

where ∇T is the gradient operation with respect to the parameter vector T. In this
notation, F is considered a 1D vector of size |Ω| × 2

By using Euler’s method we then update F as follow:

F ← F − γ∇FLp

where γ is the optimization step value.
The optical flow problem is actually the root of reprojection based optimization. Our

depth problem, is in fact a composition of a function that outputs an optical flow and a
photometric error.

Note on inverse warp

Throughout this subsection, we implicitly introduced the operation of inverse warp. In-
deed, when optimizing optical flow from It to It+1, we constructed an image similar to
It while sampling colors from It+1. This operation is called inverse warp because even
if the optimized optical flow map indicates the displacement of It pixels, the constructed
image moves It+1 pixels and not It pixels, and the applied optical flow F ′ from It+1 to It
is the inverse of F.

∀p ∈ Ω,

{
p′ = p + F(p)

p = p′ + F ′(p′)

The difference with direct warp, where It pixels would have been moved so that con-
structed image would resemble It+1 will be discussed on section4.5.

4.3 Retrieving a depth map using reprojection based optimiza-
tion

Retrieving a depth map can be considered as a subproblem of our initial optical flow prob-
lem. Indeed, from an estimated depth θ̃t and pose estimation T t→t+1 = (R, t) (possibly
known from other means, e.g. dedicated sensors), we can deduce an optical flow map.
Using equation 3.4 from chapter 3, and assuming a rigid scene, we get for any point
coordinate p in It:

F(p) = p−Π

(
KRK−1Π−1(p) +

Kt
θ̃(p)

)
(4.2)

Practically, this subproblem consists in modeling the reprojection with less parame-
ters: instead of optimizing the full optical flow, which is |Ω| × 2 independent elements,
we simply optimize a depth map of |Ω| elements and a 6 degrees-of-freedom vector of
displacement.

An important aspect of this problem to consider is the fact that estimated depth θ̃t is
only a function of It while pose T t→t+1 is function of both It and It+1. This is particu-
larly interesting when considering another frame pair still involving It. For instance, when
considering It+2 with its associated pose relative to It, T t→t+2, the new reprojection opti-
mization is still modifying θ̃t along with T t→t+1. Only 6 new parameters are added to the
problem.

More generally, when considering one key frame It and a set of N reference frames Ik,
one can retrieve depth with joint reprojection optimization, as it only requires W × H + N × 6
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I0 I1 It I3 I4

PoseNet

DispNet

Inverse
Warp

Photo
loss

T t→i = (Ri, ti)

Figure 4.2: General workflow architecture of SFMLearner[Zho+17]. (simplified, without
regularization)

parameters. This technique is the underlying concept behind dense SLAM techniques
such as DTAM [NLD11].

4.3.1 Training a neural network to output depth with reprojection based
optimization

The next logical step from this depth retrieval is then to train a neural network to output
depth with this technique, also called auto-supervision. The supervision is not made on
the target depth map anymore, since the network trains on a lot of different samples. In-
deed instead of computing a loss relative to the difference of our network’s output and an
estimated depth map from reprojection based optimization, the photometric loss function
will serve as a direct value to optimize for the network, which will eventually result in an
indirect optimization of depth values from its output.

SFMLearner from Zhou et al., a quick presentation

To illustrate this training workflow, we partly introduce a very influential and yet simple
work on auto supervision from Zhou et al. [Zho+17]. All other works of this field (including
this one) are actually built on this fundamental basis.

As mentioned in the introduction of this chapter, this work relies on a neural network
to produce a depth map (more specifically, the network called DispNet outputs an inverse
depth map), but also on another network to produce a pose (called PoseNet). Both
networks are simple CNNs. PoseNet is inspired from VGG[SZ14], while DispNet is inpired
from FlowNet[Dos+15], just like our DepthNet. This work may not be the most recent, but
will serve as a basis for comparison, as further improvement built on this work [Cas+19;
Ran+18; YS18] mostly try to address the non-rigid scene problem which we chose not to
focus on. The general workflow is presented figure 4.2. The depth is estimated at a target
frame called It, located at the middle of a sequence. Other frames are called reference
frames Ii with i ∈ J0, N − 1J.

This work is very interesting for us, because the supervision need is very low, we
don’t even need to know the displacement which is trained to be estimated. Using this
technique might help us to quickly get a first prototype for a real world DepthNet fine-
tuning workflow with very few changes.
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4.3.2 Conclusions of reprojection based optimization

Our review showed that it was possible to train a neural network to output depth only with
a bilinear sampling operation which is differentiable, information about camera movement
and geometric calibration. No depth groundtruth is involved in the training process.

We also have a way to construct a training algorithm that does not require camera
movement to get significant results for both depth and pose estimation. Indeed, the work
of Zhou et al. is very similar to what we want to achieve, and require a few changes for it
to fit our needs regarding DepthNet :

• Replace DispNet with DepthNet

• feed two images to DepthNet, with rotation compensation, this is possible with
PoseNet.

• normalize PoseNet translation estimation magnitude to get DepthNet nominal dis-
placement

These changes will be discussed during the next chapter. Instead, we are going to
study this work as thoroughly as possible with the hope that fixing potential problems in
this context will improve the basis for a better unsupervised DepthNet training.

The next sections will discuss the context of training a network to output depth within
a sequence of frames, with a known pose, and especially the two main independent
limitations of the reprojection based optimization used alone, and how we might be able
to overcome them:

• Regularizing a depth map to be physically plausible (section 4.4)

• Filtering invalid reprojection errors due to occlusions (section 4.5)

4.4 Regularization with smooth loss and diffusion

In addition to photometric loss Lp, SFMLearner’s algorithm also introduces a smooth loss.
This loss tries to regularize the depth network’s output by averaging Laplacian absolute
values of its output.

Ls =
1
|Ω| ∑

p∈Ω
|∆DispNet(It)(p)|

This regularization problem is actually very common in classic image processing op-
erations such as denoising or optical flow estimation.

After studying smooth regularization in context of the more well known optical flow
estimation problem, this section will focus on presenting a review on possible smooth
losses to apply on a network output to improve the resulting depth and making it as
physically plausible as possible.

4.4.1 Optical flow smoothing

We discussed the color consistency optimization in its simplest form that assumes that
finding the global minimum of eq 4.1 is the same as finding optical flow. Obviously this
assumptions does not hold in general because the mapping from position to color is highly
non-injective, and multiple points can have similar colors. This is the case for example in
a texture-less area, where the color is similar on a large area of points.
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To solve this problem, several assumptions are made on typical realistic optical flow.
For example, Horn and Schunck [HS81] extended the reprojection optimization with a
smooth constraint, so that points close to each other have similar optical flow values.
This assumption is related to the fact that when looking at moving objects, optical flow is
continuous with respect to surface.

It can be noted that continuity on a discrete 2D map is not physically meaningful. In
practice, reducing the discrete Laplacian ensures value proximity between nearby points.
This is known as diffusion, inspired from the heat equation.

∂tF = ∆F =

 ∆F1

∆F2

 =

 ∂2

∂u2 F1 +
∂2

∂v2 F1

∂2

∂u2 F2 +
∂2

∂v2 F2


where ∆ is the Laplacian operator, which is then approximated by updating its value

using Euler’s method and (u, v) are real values inside [0, H] × [0, W]. In practice, the
derivative is constructed from difference values within integer positions inside Ω, using
convolution kernels, such as Sobel for first order derivate and discrete Laplacian for sec-
ond order, in accordance with the scale space method [Lin96].

∆F =

[
0 1 0
1 −4 1
0 1 0

]
∗ F

F ← F + λ′∆F

where λ′ is the step value.
The new optimization workflow is then

∂tF = −∇FLp + λ∆F (4.3)

F ← F − γ∇FLp + λγ∆F

where λ is the smoothing rate and γ the optimization step.

4.4.2 Applying smoothing on a depth map

Similarly to optical flow, we can try to regularize a depth map. The first idea might be to
simply smooth the resulting optical flow from depth and motion.

However, we can take this regularization further by making several physical assump-
tions directly on the depth map and try to apply them as a diffusion operation. It is
important to formulate them precisely to determine how a depth map can be regularized,
and what constitutes a realistic depth. Instead of deciding how we want our depth maps
to be like, we must first think about it the other way round: "Given a perfect depth map,
what regularization would make it stable?"

• For naturally occurring scenes, depth discontinuity is possible only when image
colors are also discontinuous. This is not necessarily true for the opposite, when for
example the camera is looking at a textured plane. This is the case when looking at
a road with markings for example.

• We suppose 3D points to describe a continuous differentiable surface. As a con-
sequence, every surface point when zoomed enough from any point of view would
look like a plane. A plane surface should be possible to converge to, even if it is not
normal to the camera and goes to an infinite value, this case can be illustrated when
looking at the horizon for example. In other words, the smoothing regularization on
a depth map of a plane surface should be ineffective.
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Figure 4.3: In this example called Kanizsa Triangle [Kan55], humans instinctively see a
triangle above everything else and thus depth discontinuity in areas with no luminance
gradient.

• We can also mention the problem with a completely uniform background. Since
there is no texture, the photometric loss does not create any incentive to change its
value there since there is no error. One of the goal of regularization will be to keep
this background at the right value. In other word, any regularization happening on
a textured surface cannot spread to a texture-less area if there is a clear boundary
between the two surfaces.

It is worth mentioning that the first assumption for image discontinuity is not always
true, as the human mind itself assumes surface (and thus depth) discontinuities in well
known optical illusions called subjective contours [Cor72]. This not only indicates that our
learning workflow is not the same as the natural one experienced by humans, but also that
under very specific light conditions, this could happen, making our whole optimization fail.
While being probably worth studying in both neurological and computer vision contexts in
further works, we believe these examples to be marginal in nature and choose to ignore
them here.

In this section, we are interested in regularizing our optimization problem by smooth-
ing a 2D map, the same way optical flow needed to be smoothed in Horn and Schunck
[HS81]. The first thing we need to do is to transpose the physical assumption of our
surfaces into the depth map.

Regardless of the method used for smoothing, we consider a 2D map to be smooth
at some point when its Laplacian is zero, because it’s locally planar. Consequently, this
is also a map stable to diffusion.

4.4.3 Translating physical assumptions into equations

For our optimization to be physically accurate, We must find a map where we would
actually want its Laplacian to be zero. For example, as shown figure 4.4, when looking
at the horizon, depth gradient ∂θ

∂y is not of constant gradient. However, inverse depth ξ is
piecewise affine.

Proposition 2. The inverse depth map ξ = 1
θ̃

of a perfect plane has a null Laplacian and
is then stable with respect to smoothing.
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Figure 4.4: Example of a scene with an horizontal plane. Right is the depth of the vertical
line depicted on the rendered image.

See appendix C for proof. From now on, our study will be focused on optimizing depth
map, with a smooth constraint on inverse depth, called ξ.

4.4.4 Smooth loss presentation

In an attempt to generalize this "smooth constraint", this section will study loss based
smoothing, as it is widely used e.g. in image denoising. It is an optimization problem
where we design a smooth loss Ls and add it to the other loss we try to minimize.

For a particular 2D map ξ defined on a surface Ω, we will study two smooth loss
forms, trying to minimize gradients:

Ls∇ =
1
2

x

Ω

c
(
‖∇ξ‖2) dS (4.4)

or trying to minimize Laplacians:

Ls∆ =
1
2

x

Ω

c
(
(∆ξ)2) dS (4.5)

These equations can be used to retrieve well known denoising loss functions.
Total Variation, also called TV Loss [ROF92] is a special case of equation 4.4 where

c = x 7→ 2
√

x.

LTV =
x

Ω

‖∇ξ‖dS

Besides, we will link the general expression of these losses with diffusion by studying
their gradient.

Definition 4. For a particular loss function L, if there is a scalar or vector field T such
that

∇TL = −∆T

the loss wi ll be called diffusion loss with respect to T, because if T was the training
parameter for the gradient descent optimization, we would get the diffusion operation

∂tT = −∇TL = ∆T
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This is the case when considering Ls∇ and c = x 7→ x, as shown by Perona and Malik
[PM90], because we have at the interior of Ω

∇ξLs∇ = −∆ξ

(see appendix D.1)
As such, we now identify the loss Ls∇ with c = x 7→ x as the diffusion loss.

Ldi f f =
1
2

x

Ω

‖∇ξ‖2dS (4.6)

4.4.5 Diffusing the output of a neural network

One must be careful when talking about diffusion in the context of a function output, here
a neural network. In the case of a regular diffusion such as with Horn and Shunck [HS81],
the trainable parameters are the map we want to smooth itself.

As such, if we apply a smooth loss Ls on ξ and ignore the other losses, the optimiza-
tion step is as simple as:

∀p ∈ Ω, ∂tξ(p) = −∇ξ(p)Ls

ξ(p)← ξ(p)− γ∇ξ(p)Ls (4.7)

finding the value ∇ξ(p)Ls will completely characterize the smoothing process on ξ.
In the case of an output of a function (here, a neural network), the general optimization

step becomes for a vector of trainable parameters W (for example, the weights of a neural
network) and a function f such that f (W) = ξ:

∂tW = −∇WLs

= −J f (W)>∇ξLs

Where J f (W) is the Jacobian of f evaluated in W and M 7→ M> the transposition
operation. It should be noted that for J f (W) to be a matrix, we must consider ξ as a
vector of values, ξ ∈ R|Ω| (the vector dimension is the number of pixels).

This equation can be also written like this:

∀i, ∂tW i = ∑
p∈Ω

∂ f
∂W i

(p)× ∂Ls(ξ)

∂ξ(p)

As a consequence, we can have the evolution of ξ

∂tξ = J f (W)∂tW = −J f (W)J f (W)>∇ξLs (4.8)

It appears that when f is identity (and thus W = ξ), J f is also identity and when Ls
is the diffusion loss with respect to ξ, can retrieve the behaviour presented in definition 4.
In practice, the Jacobian of a neural network is very computationally expensive to get, so
there is no guarantee about ξ = f (W) evolution. The only thing we know is given a step
little enough, Ls will be lowered, but we don’t even know the maximum size of that step.

Of course, this study generalizes to any kind of loss whose gradient with respect to a
function output can be computed. Although widely studied on the regular context (when
Jacobian is identity matrix), loss functions may have robustness problems for an unknown
Jacobian. Appendix D.2 shows in a simple example how a too large optimization step
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size might make a 2D map diverge, and in appendix D.3 how a simple function such as
inverse will make the regularization step size unknown. This is particularly interesting
for our use-case, since DepthNet is supposed to output depth directly, so we will end
up trying to smooth its inverse. Note that the ELU function[CUH15] we used (see 3.5.3)
might help mitigating gradients magnitude of ∇ξ when estimated depth θ̃ is close to 0
(and thus ξ is high).

Adding robustness to smooth loss

From now on, for a particular smooth loss function Ls with respect to a scalar or vector
map T, its gradient∇TLs will be discussed but in the general case, additional steps might
be added. Namely, we can decompose the optimization process into three separate
steps:

1. consider the T = f (W) map we would like to smooth that is the output of a neural
network, like e.g. ξ or ∇ξ, as a set of trainable parameters.

2. perform a smoothing operation (such as diffusion) directly on it.

3. design the loss function as a distance between the smoothed map Tsmooth and T we
actually want to smooth with the parameters W . L′s = d(T = f (W), Tsmooth).

This method might use any kind of smoothing method, as long as it is applied directly
on T.

Two step joint optimization

An interesting idea to investigate in the future would be to further apply this idea of de-
coupling smoothness and photometric optimizations. This idea first introduced by Stein-
brucker [SPC09] is also applied within DTAM algorithm [NLD11], and aims at finding
the solution of equation 4.9, for a fixed estimated inverse depth ξ = 1

θ̃
. d is a distance

function, e.g. L2 in the case of DTAM, and γ is an arbitrary positive hyper-parameter.
Following e.g. DTAM method using Legendre-Fenchel transform and primal-dual opti-
mization [CP11], a global minimum could be found in real time (with a 2011 high end
customer hardware), and it can potentially be reused here, alternatively with optimization
of the same equation 4.9 but with fixed α.

L(θ̃, α) = Lp(θ̃) + λLs(α) + γd
(

α, ξ =
1
θ̃

)
(4.9)

The global optimization can then become:

1. estimate θ̃ = f (W) from trainable weights W .

2. optimize L(θ̃, α) with θ̃ fixed, find the global solution α̃ = arg min
α
L(θ̃, α) with an

off-the-shelf algorithm.

3. compute ∇WL(θ̃, α̃) and update W .

4. update the γ value if needed, ideally it would lower throughout the training, enforcing
a stricter similarity between α and ξ.
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4.4.6 Minimizing gradient with Ls∇

As it is used by most published works, we can briefly analyze variations of the smooth
loss function mentioned eq 4.4

Ls∇ =
1
2

x

Ω

c
(
‖∇ξ‖2) dS

As said above, but in a more general way, we know that simple gradient descent
applied on ξ of this cost function results in the following inside the boundaries.

∂tξ = −∇ξLs∇ = div
(
c′(‖∇ξ‖2)∇ξ

)
(4.10)

For example, the total variation loss (called TV loss) [ROF92] mentioned above is a
widely used constraint in partial derivative equations (PDE) based inpainting algorithms
[SC02], and uses the same idea, but with gradient norm.

LTV =
x

Ω

‖∇ξ‖dS

From identifying c = x 7→ 2
√

x, we can deduce

∇ξLTV = −2div
(
∇ξ

‖∇ξ‖

)
If instead, we have c = x 7→ x, we end up with this already discussed equation:

∇ξLdi f f = −∆ξ (4.11)

We then retrieve the gradient that would result in a diffusion if ξ was the trainable
parameter.

Global solution of diffusion loss Ldi f f

Although not the global solution, from equation 4.10 it seems that a constant slope (and
thus a null Laplacian) would be a stable position for this optimization, regardless of c
function. This is not the case because the integration is made on a finite map, and the
exact term on the boundary of Ω is:

∂tξ = −∇ξLdi f f = div
(
c′(‖∇ξ‖2)∇ξ

)
− c′(‖ξ‖2)(∇ξ.n) = ∆ξ −∇ξ.n

where n is the unit vector normal to the boundary. If we consider the 1D example and
a map where ∆ξ = d2ξ

dx2 = 0 everywhere, we get:

∂tξ(0) = −
dξ

dx
(0)

Following the convention of computing gradient in a picture boundary with values
inside the interior of that set ( dξ

dx (0) = limx→0+
dξ
dx (x)), we can see that increasing ξ(0)

while keeping ∂tξ = 0 inside of Ω (since ∆(ξ) is null everywhere) will then decrease the
gradient dξ

dx (0) and vice-versa. ∂t
dξ
dx (0) is then of the same sign as − dξ

dx . In other words,∣∣∣ dξ
dx

∣∣∣ will be lowered, and gradient will converge to 0. The same applies to ∂Ω, and can be
extended to the 2D case:

∀p ∈ ∂Ω, ξ(p).n −−→
t+∞

0
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With propagation of this gradient, we can see how this will make the whole map
converge to a constant plane.

Although not developed here, an interesting solution to this problem would be to not
apply the optimization on δΩ. That way, the points on boundaries would be unaffected
by the optimization making the rest of the image stable with a non-null gradient. This
is potentially hazardous as points in boundaries often are noisy because it lacks neigh-
bouring pixels informations for the main photometric loss to be reliable, making smooth
regularization essential for them. In our 1D use-case, if we use this method, the only
solution for the smooth loss would be a linear interpolation between the two boundary
values, regardless of starting values in the interior of Ω

4.4.7 Minimizing Laplacian with Ls∆

In the case we want a null Laplacian but not necessarily a constant map, some recent
works proposed to minimize the sum of all absolute values of Laplacians of a 2D map
[Zho+17; WB18]. For ease of notation, we will call this loss TVV for total variation of
variation, in reference of total variation Loss [ROF92]. This equation can be retrieved
from equation 4.5, with c = x 7→ 2

√
x

LTVV =
x

Ω

|∆ξ|dS

However, every Laplacian value is dependent on the adjacent values. More generally,
from Ostrogradski 2D theorem, we can state that

x

Ω

div(A)dS =
∮

∂Ω
A.ndl

where A is any 2D function, Ω is a closed surface, and ∂Ω its boundaries, and n is
the normal vector to the boundary tangent. By identifying A = ∇ξ, we get

∀Ω′ ⊆ Ω,
x

Ω′
∆ξdS =

∮
∂Ω′
∇ξ.ndl

Here, since we would use the absolute values, the surfaces Ω′ to consider are the
ones where Laplacian values keep the same sign.

With TVV loss, the only points in the inverse depth map ξ where an optimization is
actually done are the array bounds and the inflexion points, where Laplacian changes of
sign.

This optimization, even though it has empirically proved to converge to blurry version
of the initial image after several optimization steps is far from regular.

Let’s instead look at the general smooth loss Ls∆ that tries to lower Laplacians.

Ls∆ =
1
2

x

Ω

c
(
(∆ξ)2) dS

We can show that the resulting ξ-wise gradient loss is

∇ξLs∆ = −∆(c′((∆ξ)2)∆ξ) (4.12)

(see appendix D.4.1 for a demonstration)
we can retrieve our first example of TVV Loss when c = x 7→ 2

√
x. We then get

∇ξLTVV = 2∆
(

∆ξ

|∆ξ|

)
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since ∆ξ
|∆ξ| is either 1 or −1, its differentiation is always 0 or infinite. In practice, since

discrete differentiation is approximated with finite differences, we actually get a finite value
when ∆ξ changes of sign.

∀p ∈ Ω,∇ξLTVV =


1 if ∆ξ < 0 and changes of sign
−1 if ∆ξ > 0 and changes of sign
0 otherwise

When c = x 7→ x, we have:

∇ξLs = ∆2ξ (4.13)

This equation is similar to the equation that qualifies a diffusion loss (definition 4) but
is not of the form ∇TL = −∆T

However, knowing that ξ is in fact a function and not the trainable parameters, rather
than studying Laplacian minimization of it, we can see this loss as minimizing the diver-
gence of its gradient ∇ξ and get insight from the gradient of loss with respect to ∇ξ,
∇ALs∆ with A = ∇ξ.

4.4.8 Diffusion of a vector map with divergence minimization

Let us consider the 2D vector map A. We want to minimize its divergence div(A). The
motivation for this is that when A = ∇ξ, we get the equivalence div(A) = ∆ξ.

We can then modify equation 4.10 to work with divergence of a vector instead of
gradient of a scalar:

Let us consider this modified loss function, from 4.5, by replacing ∆ξ with divA:

Ls∆ =
x

Ω

c
(
div(A)2) dS

From this equation, assuming the trainable parameters are components of A, we get
in Ω (the interior of Ω):

∇ALs∆ = −∇
(
c′
(
div(A)2) div(A)

)
(4.14)

(see appendixD.4.2 for a demonstration)
we can retrieve our first example of TVV Loss when c = x 7→ 2

√
x. We then get

∇ALs∆ = 2∇
(

div(A)

|div(A)|

)
When c = x 7→ x, we have

∇ALs∆ = −∇ (divA) (4.15)

And especially, when at first A is of the form ∇ξ, we get the following equation, no
matter how A is derived from, even when it is diffused independently of ξ, for example in
the fashion of two steps optimization (section 4.4.5). See appendix D.4.3 for a demon-
stration.

∇ALs∆ = −∆A (4.16)

The minimization of square values of Laplacian, as described by equation 4.5 with
c = x 7→ x can then be called gradient diffusion loss Lgdi f f . Because we have
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Lgdi f f =
x

Ω

(∆ξ)2dS

∇∇ξLgdi f f = −∆(∇ξ)

Figure 4.5 presents a comparison for the four mentioned techniques in a 1D example:
TV, diffusion, TVV and gradient diffusion. We test a smooth loss optimization with a
sinusoid and and abs function with added noise. Stochastic gradient descent (SGD) is
used, with indicated learning rates and momentums in each graph title. As shown and
discussed section 4.4.6, TV loss and Diffusion Loss seem to converge to a constant
slope, but also a constant value. On the other hand, the first TVV appears to smooth
the function enough to denoise it, but fails to converge to a simple affine function. Finally,
gradient diffusion loss converges to an affine function, but needs ten times more iterations
to achieve a reasonable result, with a higher momentum of 9.99. This function which
makes intervene the fourth derivative of ξ (see equation 4.13) is one of the reasons the
convergence is so slow.

4.4.9 Edge-aware smooth loss

When trying to smooth a 2D map relative to a particular image, for example optical flow
F, depth θ̃ or inverse depth map ξ of image I, although useful for texture-less area,
smoothing everything equally might be not ideal when considering discontinuities (and
then the Laplacian is theoretically infinite). For example occlusion areas in a depth map.
The map is then "over smoothed" [Gar+16].

As tested by many previous works [NE86; WB18; MWA18; Ran+18; YS18], a simple
way to overcome the smearing of edges in our map, is to temper the smoothing when the
image has edges, i.e. when it has gradients with high norm.

To establish an efficient strategy, we can look at the image denoising techniques, and
where we can use it differently for inverse depth map texture-aware smoothing.

Taking back our smooth losses equations 4.4 and 4.5, we can replace c function with
more complicated ones, especially function with decreasing derivate. As such, smoothing
will be less enforced for high gradients. For example Perona and Malik [PM90] proposed
the following derivate function g = c′ (among others) for the image I:

g : ‖∇I‖2 7→ exp

(
−
(
‖∇I‖

κ

)2
)

(4.17)

This technique is called anisotropic diffusion, contrary to the regular diffusion (also
called isotropic), which has the same diffusion strengh everywhere.

Besides, in their work, they presented a mathematical analysis of the function g.

• They show that with any positive function g, the smoothed image never diverges
outside original image extrema (given a small enough optimization step), this is the
maximum principle.

• They also show that if g is differentiable, given the sign of Φ′ where Φ = x 7→ xg(x),
the edges will be smoothed (if Φ′ > 0), or enhanced (if Φ′ < 0). The image diffused
that way converges to a piecewise constant map where gradient is either null or
infinite.

From equation 4.17 we can compute the function Φ and its differentiation Φ′.

∀x ∈ R+Φ′(x) = g(x) + xg′(x) = g(x)
(

1− 2
( x

κ

)2
)
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Figure 4.5: comparison of four smooth losses TV, TVV, diffusion, and gradient diffusion.
Gaussian noise with σ = 0.2 has been added to input: a sinusoid and an abs function.
SGD is used, with indicated learning rates and momentums in each graph title. Color
indicates the number of iterations
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Figure 4.6: Perona-Malik anisotropic diffusion of a picture of a flower, κ = 0.3

In this particular function g, edges with a gradient of norm above κ√
2

get enhanced, and
mitigated otherwise. Figure 4.6 shows the picture of a flower (with values in [0, 1]) that
got diffused with a κ of 0.3. We can see that the picture tends to converges to a 3 colors
image.

Our case is different here, since we don’t have only the map ξ to work with: we also
have the image I from which ξ is extracted. We don’t want to preserve the edges of ξ
(or ∇ξ), but we want ξ edges (or ∇ξ edges) to match image I edges. As discussed
section 4.4.2, we want depth discontinuities to coincide with image discontinuities.

Nevertheless, we can be inspired by Perona and Malik proposition to adapt our loss
functions so that c′ = x 7→ h(∇I)x, where h is a decreasing function. For example:

∇ξLdi f f (ξ) = div
(

g
(
‖∇I‖2)∇ξ

)
= div

(
exp

(
−‖∇I‖2

κ2

)
∇ξ

)
Similarly, with diffusion of ∇ξ, we would get

∇∇ξLgdi f f (∇ξ) = ∇
(

g
(
‖∇I‖2)∇.A

)
= ∇

(
exp

(
−‖∇I‖2

κ2

)
∆ξ

)
Here, we mentioned ∇I which is in fact three different vectors (since image is com-

posed of three channels). To compute the norm, we implicitly take the mean of the norms
of the three gradient vectors.

One should note that if the maximum principle can still be respected for ξ diffusion,
when diffusing gradient, this is only the case with respect to ∇ξ: the slope is bounded
from the initial depth map, but not the actual values. It can have some problems, for
example when the diffusion makes ξ go under 0 which is not physically possible. So it
may be necessary to add regularization to prevent that. The simplest way is to manually
bound the output of the network so that ξ = f (W) > ε with ε a fixed strictly positive value.

The equivalent losses Ldi f f and Lgdi f f to these equations can then be computed by
simply integrating these g functions. It is actually fairly easy since ∇I is not a function of
ξ, so g(‖∇I‖2) is constant with respect to ξ.

4.4.10 Final edge-aware forms of considered smooth losses

For loss functions Ls∇ (equation 4.4) and Ls∆ (equation 4.5, we can study a particular
form of c which includes influence of ∇I. TV and TVV losses are modified to match
literature, as it is used with DTAM [NLD11] and Godard et al. [GMB17].
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Ldi f f (ξ) =
x

Ω

exp

(
−
(
‖∇I‖

κ

)2
)
‖∇ξ‖2dS (4.18)

LTV(ξ) =
x

Ω

exp
(
−‖∇I‖

κ

)
‖∇ξ‖dS (4.19)

Lgdi f f (∇ξ) =
x

Ω

exp

(
−
(
‖∇I‖

κ

)2
)
(∆ξ)2dS (4.20)

LTVV(∇ξ) =
x

Ω

exp
(
−‖∇I‖

κ

)
|∆ξ|dS (4.21)

It’s easy to see how a high κ value makes it equivalent to our first simple loss functions
definitions.

Figure 4.7 shows a comparison of anisotropic diffusion and anisotropic gradient diffu-
sion on a set of 1D examples with a simple toy image (dashed blue curve) whose gradient
is 0 everywhere except in pixel coordinates 20 and 80 where it is above the κ value. These
results indicate that as we foresaw, diffusing ∇ξ is more stable relative to image edges:
last example shows a typical texture plane surface, and regular diffusion creates an edge
from nowhere to make the depth piecewise constant. We can also see that our first ex-
ample shows a typical transgression of the maximum principle: in order to be piecewise
linear, ξ is rised above the sinusoid maximum. However, in the same time, it appears that
the portion on which this happens seems to be a good linear regression of our function
between the two discontinuities. Lastly, it can be noted that regular diffusion converges
much faster than gradient diffusion.

As a conclusion for this section, we have a set of different losses that we can apply
to a specific 2D map that might be the output of a network. In addition to the actual
function c and the weight we can apply to this loss, we can also change a κ parameters
to change behavior on images areas with texture (i.e. with a high gradient ∇I). We also
have a robust counterpart of these losses designed to avoid divergence, which might
be indicated for particularly non-linear neural network function. The inverse input of a
network being one of them.

4.5 Dealing with occlusions

Occlusions occur when an object moves behind an other. From one frame to another, the
object is then not visible anymore. This section studies how this phenomenon compro-
mises the reprojection principle which tries to retrieve pixels from one frame to another,
and what filtering can be applied to be perform a robust training.

4.5.1 Inverse warp based optimization vs occlusions

Taking back the first inverse warp photometric optimization problem, another aspect to
take into account is the occluded areas. As seen figure 4.8, some pixels can be occluded
from one frame to another. In this example, the torus should not be retrieved in the first
image but can be found in the last image. Similarly, the cube should not be retrieved in the
last frame, but can be found in the first frame. As a consequence, the task of retrieving
them in both frames is impossible and the optimization will eventually converge to a false
solution.
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Figure 4.7: 1D Anisotropic diffusion and gradient diffusion of several functions. Dashed
line indicates the image function with null gradient, except on x = 20 and x = 80. Plain
line colors indicate number of iterations

It−1 It It+1

Figure 4.8: Example of occluded elements in a synthetic scene when trying to estimate
depth of It.
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Let’s consider our problem with It, It2 and Tt→t2 , we try to reconstruct θ̃t indirectly by
reconstructing It with mentioned parameters and camera intrinsics K. If we consider the
function IW (for inverse warp) that performs this image reprojection, we can define it as:

IW : R|Ω| ×R3×|Ω| ×R6 ×R3×3 → R3×|Ω|

θ̃t, It2 , Tt→t2 , K 7→ Ĩt2→t

The photometric loss is then:

Lp = ∑
p∈Ω

d(It, IW(θ̃t, It2 , Tt→t2 , K))(p) = ∑
p∈Ω

d(It, Ĩt2→t)(p)

For example, if It+1 is the image It2 in figure 4.8, the optimization process will try to
reconstruct the cube in image It with pixels from It2 although it does not appear in the
image.

Another way to view this issue is to see that a perfect depth map would produce an
imperfect reconstruction, resulting in a non-zero loss. The optimization will then modify
the depth map to better satisfy the photometric loss. Figure 4.12 shows an example of
imperfect inverse warp caused by a perfect depth map, with a "ghost" of foreground on
the occluded background.

4.5.2 Filtering occlusion areas from optimization

One solution for solving this problem is to try to detect the occlusion and then filter them
from the photometric error to get Lp f (for photometric filtered).

Lp f (t2) = ∑
p∈Ω

{
d(It, Ĩt2→t)(p) if p not occluded in It2

0 otherwise
(4.22)

This technique, although not guaranteed to converge to the ground truth, at least
makes the actual solution stable with the optimization. The smooth loss regularization is
supposed to help in these areas where photometric loss is undefined.

As said section 4.3, the depth retrieval problem can benefit from multiple pairs of
frames at the same time (one of them being invariably the frame of which we want to
estimate the depth). As such, the occluded areas, relative to a particular frame pair won’t
be the same if the relative movement is different. Consequently, a simple solution to
the occlusion problem in two frames stated before is here to retrieve the pixel in multiple
frames, before and after, as illustrated figure 4.8. Although not guaranteed, the pixel
has greater chances to be found in another frame, especially when the movement is
consistent throughout the frame sequence: relative to It, occlusion areas for the pairs
It → It+n and It → It−n should be completely different since the associated relative
displacement is deemed almost opposite. Assuming occluded areas could be identified
between two frames, the depth map θ̃t can be estimated using redundancy in multiple
optical flow maps.

Lp f = ∑
tk

Lp f (tk) (4.23)

The next sections will discuss the different methods for detecting the occlusion areas.

4.5.3 Self filtered depth map inference

Several works [Jan+18; Zho+17] proposed a dedicated network to figure out the occluded
scenes, or more generally, the areas on which the photometric error won’t be low even
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if the optical flow map is perfect, it can be interpreted as a confidence network for pho-
tometric loss. The main idea is to multiply the photometric loss by a confidence value
Ê(It, It2) outputted by a network. During the training, the network is then encouraged to
have low values where photometric error is high. To avoid the degenerate solution with
0 confidence everywhere that would result in a 0 photometric loss, the network is also
encouraged to output high confidence values with e.g. a binary cross entropy H1 with
ground-truth set to 1.

L = ÊLp + αH1(Ê)

The confidence network tries to find a compromise between these two antagonistic
losses, and is deemed to find it where photometric error are not easily lowered, be it
from occlusion, moving object or graphical artifacts such as non Lambertian surfaces or
change of exposition.

This is a promising technique, somewhat related to Bayesian inference, where the
network also predicts uncertainty, but it adds lots of new hyperparameters to the training
workflow, especially the architecture of this new network and the weight to put to α.

4.5.4 Backward/forward consistency

Instead of asking a neural network to decide what constitutes an occluded area, we can
solve this problem analytically. In this case, we extract the occlusion areas not from the
image input like with self filtering, but rather from the pose and estimated depth. The
occlusion areas will then be tied to the depth estimation, possibly erroneous but it can be
geometrically deduced and not estimated. To better understand how we can analytically
find these occlusion areas, we can look at the more general case of optical flow.

Optical flow consistency

When considering optical flow optimization, one solution for this occluded area problem
is the forward/backward consistency check. This technique not only tries to compute for-
ward flow F+ from It to It2 , but also the backward flow F− from It2 to It. The general idea
behind this redundancy is that these optical flow maps are expected to be consistent up
to the occluded areas. Areas where optical flow is not consistent within forward/backward
is excluded from the optimization.

∀p ∈ Ω, F−(p + F+(p)) + F+(p) = 0 (4.24)

In other words, a point warped from It to It+1 with F+ should be warped back to its
original place with F−.

Since the photometric optimization problem is based on optical flow, we can apply this
filtering method to optical flow maps that results from depth and pose inference. However,
it can be seen that two different optical flow maps will be needed, F+ and F−. That means
that we would need two different depth maps to deduce these optical flow maps, and we
also would require them to be perfectly consistent.

This technique has been used for example in the case of GeoNet [YS18] and by
Ranjan et al. [Ran+18].

4.5.5 Depth map consistency

Occlusion zones can also be determined analytically directly from depth and displace-
ment. We can adapt the backward/forward consistency method used for optical flow
explained above to have a depth consistency method.
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The idea is to adapt the inverse warp function to reconstruct depth maps instead of
images. Instead of inverse warping It2 into Ĩt2→t to reconstruct It, we can try to inverse
warp θ̃t2 into θ̃t2→t and only optimize the difference between It and Ĩt2→t where θ̃t and
θ̃t2→t are close. This solution however also requires θ̃t and θ̃t2 to be both estimated, and
these estimations to be consistent.

When training depth maps from scratch, and thus having them random and indepen-
dent at first, how can we distinguish inconsistencies related to a bad depth estimation
from those related to occlusion? We are not certain the neural network won’t fall into a
degenerate solution

One solution could be to carefully engineer the training workflow. Since this problem
typically appears at the end of the convergence, this regularization can be applied with a
very low weight at first, and then when the network converges, we can assume sufficient
reliability in the depth estimation so that inconsistency is mainly caused by the occlusions.

Unsurprisingly, these techniques of optical flow and depth forward-backward consis-
tency with inverse warp encourage trial and error, and are prone to over-fitting with re-
spect to the validation set. As our main goal is to be robust to drone videos heterogeneity,
we need a more general regularization, that does not need to make assumptions on the
dataset.

4.5.6 Occlusions detections with direct warp instead of inverse warp

Our main problem with inverse warp consistency check is that it needs two different depth
maps. What we want is a way to estimate θ̃t2 only with θ̃t and T t→t2 . By looking at
reprojection equation (4.2), we can see that for each point p in Ω a corresponding point
in R2 is found. The problem of inverse warp was initially to get the color of a point in R2

using interpolation from points in Ω.
This is now the opposite problem: by a set of point of R2 with corresponding colors,

how can we know the values of points in Ω? This problem can be called depth based
image rendering (DIBR) [Sun+10]. Mathematically, this can be understood as finding the
inverse of equation 3.4, from chapter 3: for a point p ∈ Ω, find p2 ∈ R2 such that

p = Π
(

KT t→t2(θ̃t(p2)K
−1Π−1(p2)

)
(4.25)

Unfortunately, this equation may have several solutions in case of occlusions, because
the function Π is not injective. In that case, thanks to the known depth of these points, we
can just take the closest point. For ease of notation, let’s define the function C (for point
cloud) as:

C : R2 → R3

p2 7→ T t→t2(θ̃t(p2)K
−1Π−1(p2)

Let’s also define for each point p ∈ Ω the set of possible projected points P(p), and
the set of depth values D(p):

P(p) = {p2 s.t. p = Π (KC(p2))}
D(p) = {C(p2).uz, p2 ∈ P(p)}

where uz = [0, 0, 1] is the forward unit vector. We can then define the direct projection
of θ̃t as:

∀p ∈ Ω, θ̃t→t2(p) =

{
+∞ if D(p) = ∅
minD(p) otherwise
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uz,t2

×P1

×P2

×
P3

point cloud C(p2), p2 ∈ R2

Set of possible values projected to
frame point p: {P s.t. Π(KP) = p}

P(p) = {P1, P2, P3}

θ̃t→t2(p) = P1.uz,t2

Tt→t2

Figure 4.9: Illustration of the direct projection workflow. The pixel p characterizes an
occluded view with multiple possible depth values

Figure 4.9 shows an example where the projected depth has multiple possible values
for a particular pixel p.

Assuming we can perform direct warping, the idea is then to warp θ̃t into θ̃t→t2 and
then either warp θ̃t→t2 back to θ̃t→t2→t or identify pixel that were painted with a 2D map of
integer indices Id.

The index map Id is a way to retrieve what pixel was used in the point cloud con-
structed from θ̃t and the transformation Tt→t2 to be projected in each pixel of θ̃t→t2 .

∀p ∈ Ω, Id(p) =

{
NaN if P(p) = ∅
arg minp2∈P(p) (C(p2).uz) otherwise

We can then summarize these two methods:

1. Warp back:

θ̃t
Tt→t2−−→ θ̃t→t2

Tt2→t−−→ θ̃t→t2→t

If the warp operation is accurate enough, we can safely assume that differences
between θ̃t and θ̃t→t2→t are occlusion areas.

∀p ∈ Ω, occ(p) =

{
False if θ̃t→t2→t(p) = θ̃t(p)
True otherwise

2. Index back:

θ̃t
Tt→t2−−→ θ̃t→t2

Id

We can identify which point was painted and which one was not from the index map
Id that we created along θ̃t2 .

∀p ∈ Ω, occ(u, v) =

{
False if p ∈ Id(Ω)

True otherwise
(4.26)
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Direct warp Module Presentation

As a proof of concept, we propose a consistency check using direct warping instead of
inverse warping. While the inverse warp will be used for photometric error minimization,
occlusion areas will be detected thanks to this consistency check using direct warping.
We will then be able to dismiss these areas from being optimized with photometric error.
Besides, no differentiation needs to be done with direct warping, allowing us to use a very
simple pipeline.

Here, instead of finding the exact set of possible depth for each point, which would im-
ply using complicated geometry techniques such as ray-tracing [Whi05], we chose to do
the opposite: from a set of points in R2, we discretely paint pixels in Ω on the output that
are close to points actual projections. This technique is known as rasterization: it is much
simpler but also less precise and not easily differentiable, although the differentiability
aspect is not our priority since we only want to know occlusion maps.

To model direct warping, we assumed the initial depth map θt to be not continuous as
we did for It2 for inverse warping, but a "square cloud". The difference with a point cloud
is that each point has a "width". The width is computed so that the projection of the 3D
square into the initial frame is exactly 1 pixel large. This algorithm is a simplified version
of McMillan’s image-space Gaussian reconstruction [MJ97].

For frame coordinates we take the convention that for an integer coordinate, the point
is at the center of the square pixel. As a consequence, when we have a float frame
coordinate point (u, v), the corresponding pixel to paint is at (round(u), round(v))

The rationale for square cloud is that when we have a forward movement, and thus
a zoom in our depth map, disocclusions don’t appear, because along with the distance
between the squares, their width is also increased.

The algorithm for our projection module is presented algorithm 1.

Algorithm 1 Compute θ̃t→t2

set θ̃t→t2 to infinity everywhere
set Id to NaN everywhere
for all p ∈ Ω do

Width = θ̃t(p)
P′ = KTt→t2(θ̃t(p)K−1Π−1(p))
X, Y, Z = P′

u0 = X−0.5×Width
Z

v0 = Y−0.5×Width
Z

d = Width
Z

v = round(v0)
do

u = round(u0)
do

if (u, v) ∈ Ω and Z < θ̃t→t2 then
θ̃t→t2 ← Z
Id(u, v)← p

end if
u← u + 1

while u ≤ u0 + d
v← v + 1

while v ≤ v0 + d
end for
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This pipeline is very simple as it always assumes the squares to be perfectly normal
to the camera axis. As a consequence, this algorithm is not perfectly robust to rotations.
In the case of rotations in our scene large enough for side effects not to be negligible,
we could easily extend this algorithm to include square inclinations, but because our
scenes usually have very low displacements relative to each other, we choose to keep it
simple. The algorithm is not developed in this report, but we extended it to also warp the
corresponding image pixel for visualization purpose, using the index map Id. That way
we can see which pixel is mapped where. As mentioned above, unlike inverse warping,
this operation is not spatially differentiable. Some works have been done to to make
rasterization and even ray tracing differentiable [Li+18; LB14], but we don’t need that
functionality here, as we just want to identify the occlusion areas.

Occlusion detection module

Once we got direct warping developed, we know the occlusion and valid areas for θ̃t→t2

with respect to Tt2→t. To get the equivalent in θt we can first look at the method based on
index map (see equation 4.26).

This method we call "index back" will have a sparsity problem: overlapped pixels will
not be indexed and thus considered occluded while a continuous rasterization would have
made them appear. As a consequence, the filtered gradient map from photometric error
is very sparse.

However, our main goal is to get rid of false negative for our occlusion filter: pixel
that are falsely considered non-occluded should be avoided, at the cost of potential false
positive if they are evenly distributed.

Because of its simplicity, our pipeline might not be robust to inclined plane. Indeed,
unwanted disocclusion can appear, some background parts normally occluded will be vis-
ible, indexed and optimized while they should not be. As mentioned above, this problem
is partly solved by the assumption of little displacement, but can appear when considering
very thin local maxima.

The indexed map could probably be improved by filtering with e.g. morphological
filters or median filters, but we can also chose to do the same direct warp operation with
θ̃t→t+1 to avoid foreground sparsity. This is particularly interesting when considering false
negative regarding occluded background. With a foreground continuous enough, false
negative will be sparse, while true positive won’t be. It means we can filter out these
values with a simple dilation operation applied on the occlusion mask. The valid map is
simply the coordinates where θ̃t→t2→t is within a range of θ̃t.

α > 1, ∀(u, v) ∈ Ω, occ(u, v) =

{
False if θ̃t→t2→t ∈ [ 1

α θ̃t, αθ̃t]

True otherwise

Figure 4.10 shows a comparison with "index back" and "warp back + erosion of valid
pixels by 2 pixels". This example features a depth map with a foreground at his center.
The considered displacement is The depth map has a noise of σ = 0.1 and false negative
appear beneath the foreground during warp (first frame).

4.5.7 Conclusions on occlusion considerations

This section presented the fact that in addition to not being injective which is partly solved
with smooth regularization, the inverse warp function is not perfectly representative with
respect to depth and movement. True minimum of the resulting photometric loss function
is not indicating a true depth as soon as the scene features occlusions. Filtering invalid
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Figure 4.10: Illustration of occlusion detection module. NaN values are white colored.
Displacement is

√
2

2 [−1, 1, 1]: the camera goes down left and forward, field of view is
90◦. First row: presentation of θt and theoretical results on this perfectly smooth depth
map. Notice the foreground is also occluded because it goes out of field of view. Second
row: presentation of on ν, a noisy equivalent of θt, with a Gaussian noise with std of 0.1
νt = θt +N (0, 0.1). Result of direct warping (center) and filtered depth map with index
back method. Last row: warp back of warped depth ν̃t→t+1, and filtered depth map using
the warp back method, followed by an erosion of 2 pixels.
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inverse warp areas is an attempt at making the photometric loss indeed minimum at the
perfect value.

We now have along photometric error two studied tools to train a network to retrieve
the depth of a picture within a sequence of frames. The next step in elaborating an
unsupervised training workflow is to determine optimal values.

4.6 Determination of optimal hyper-parameters with toy prob-
lems

We now want to make a comprehensive study of our potential options for an unsupervised
training before deploying it on a big drone dataset with our DepthNet network.

In order to study the different works on unsupervised depth learning, we decided to
evaluate it on a very simple version of the problem. The key here is to evaluate the
training quality and how it compares with the ideal supervised case, and not the network
quality regarding over-fitting. As such, we reduce the problem to over-fit a small number
of different depth maps: depth values are the very trainable parameters we apply the
gradient descent on, which is very similar to DTAM [NLD11]. In this toy problem, we make
abstraction of the neural network: we simply want a training algorithm that can converge
to a reasonable and stable depth map in the hope that it will be a good candidate for the
full workflow with a neural network that tries to infer depth from images.

Indeed, one of the main drawbacks of this photometric based training is the lack of
stability. It has been shown thanks to a test set with ground truth that photometric loss
was not a good quality measure, and that depth quality did worsen when the training was
too long [Zho+17]. This indicates that training on a totally ground truth-less algorithm
with only photometric loss is impossible since it would require a validation set for early
stopping (as presented in [Pre12] among other methods to prevent overfitting) in order for
the network to stop training further and compromising its quality.

It must be noted that this is different from over-fitting: the quality also worsens for
training frames. It will appear that even in our toy problems that is designed to be over-
fitted, a lack of good regularization can make our depth maps diverge, while still lowering
the photometric loss.

4.6.1 Scenes presentation

From physical assumptions made section 4.4.2, we want to design scenes that will test
the robustness of an algorithm to them.

Namely, we identified problems that an auto-supervised training algorithm should be
able to solve.

• A scene with two clear grounds, where the foreground has some texture disconti-
nuity while being perfectly smooth.

• A scene with depth discontinuity that triggers occluded area from one view point to
another.

• a scene with an infinite plane, not normal to camera plane

• a scene with a texture-less background, on which the regularization should not be
applied.

To feature these problems, we focus on two very simple scenes, shown Figure 4.11:
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1. a scene composed of one static foreground object and a background. This scene
will be further referred to as "Flower", since the foreground is textured with a daisy.

2. a scene of an infinite horizontal plane. This scene will be referred to as "Horizon".

The scenes have three frames and a known displacement between the frames. The
goal of this experiment is to find the depth map of the center frame only using reprojection
optimization. Thanks to the uniformity of displacement, for the flower scene, the occluded
areas shown figure 4.12 are not the same, which makes it theoretically possible for every
pixel to be retrieved in at least one of the 2 frames.

A workflow not able to converge in our examples might not be robust to train on a
larger dataset such as KITTI [Gei+13], Still Box or our unlabeled drone sequence with-
out the necessity of a validation dataset with depth ground truth. This statement is not
necessarily true as stochasticity and sufficiently heterogeneous examples during training
can lead to implicit regularization. As a consequence, the optimal learning schedule can
be different from one dataset to another.

A first result on optimization can be seen figure 4.13 where only the photometric loss
is optimized. This failed convergence serves as a baseline for our next regularization
losses.

Metrics

To evaluate optimization tricks on our toy problems, we have to design a set of meaningful
metrics for a potential extension to a wider problem. More specifically, we must optimize
the error for both our scenes.

As a consequence, we must look at a joint metric that heavily penalizes performance
discrepancy. A good way to do so is to find a normalized metric that is 1 when the
estimated depth map θ̃ is perfect, 0 if it’s worse than our starting point (with everything
set to background depth). That way, by the geometric mean of the scene metrics, we get
a performance index that gives priority to consistency.

If we look at a standard performance evaluation such as logarithmic error LE (see
chapter 3), for a particular scene S with associated depth target θS and initial depth value
θ̃S0 , the normalized metric is then

LE(θ, θ̃) =
∥∥∥log(θ)− log(θ̃)

∥∥∥
MS (θ̃

S ) =

{
0 if LE(θS , θ̃S ) > LE0

1− LE(θS ,θ̃S )
LE0

otherwise

with LE0 the initial error: LE0 = LE(θ̃S0 , θS ). This value depends on the starting depth
map.

The general quality metric is then for a set of k scenes S = {S0,S1, · · · ,Sk}

M = |S|

√
∏
S∈S

MS

In our case k is only 2, but should we find a new suited scene representative of a
characteristic problem not found in the first two, the formula would still hold.

From now on, unless specified otherwise, every quality measure will be based onM
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Flower Scene

Horizon Scene

Figure 4.11: Our two toy problems "Flower" (top) and "Horizon" (bottom). For each
scene, first row are the three frames of the scene, and second row is the ground truth
depth of the center frame. Images are 200× 200 pixels. Scenes have no rotations. Flower
scene has a displacement of 1

10 [1, 1, 0] (camera goes right and down, so the image goes
left and up), Horizon scene has a displacement of 1

10 [0, 0, 2] (camera goes forward). Cam-
era is a standard centered pinhole with 90◦ of field of view. For optimization depth starting
points are equal to background, i.e. 10m
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Figure 4.12: First row: Illustration of optical flow construction, and how a perfect depth
produces imperfect warping. A "ghost" of the foreground can be seen on occluded areas,
which the reprojection based optimization will wrongly try to solve. Second row, our two
imperfectly warped frames from It−1 and It+1 to It. Last row, the differences between
warped images and It are the occlusion areas. We can see that the non-zero areas don’t
cover the same pixels.
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Figure 4.13: optimization results when only photometric loss is applied for depth opti-
mization. Mean logarithmic error is worse at the end than at the beginning for both cases.
For each scene, from left to right and top to bottom: depth result, difference with ground
truth, final inverse warp of It−1 and final inverse warp of It+1

4.6.2 Tests on smooth loss regularization

From section 4.4.3, we know that the value we want to apply diffusion on is not our
trainable parameters θ, but the inverse depth map ξ = 1

θ .
Smooth loss functions presented section 4.4.10 will be tested. For each smooth loss

(TV, TVV, diffusion and gradient diffusion), we will try to find the best loss hyper parame-
ters for the measureM, and we will be able to compare them.

Robust smooth losses

As we advised section 4.4.5, we will also try "robust" versions of the considered loss
function. In our tests (sec 4.6), they will be denoted by the prefix "robust".

The robust smoothing will consist in a simple gradient descent applied on a clone of
ξ. It needs two parameters to compute the diffusion of our output, the optimization step,
just as a regular optimization, and the number of iterations. In the following tests, to avoid
unnecessary overhead of loss computation, we chose a step value of γ = 0.1 and 10
iterations. For distance function, mean square error will be used.

Besides, the training parameters are depth values, while the smooth loss functions
are applied on inverse depth ξ. This makes a trivial use-case where applying a "robust"
version of a smooth losses, might be useful. The derivative of the inverse function is
highly non linear (see appendix D.3). As such, all our tests with smooth losses will be
done using a regular potentially unstable version, and their robust counterpart.

Hyper-parameter search

The main goal of this experiment is to find a loss that is robust to our two supposedly
complementary scenes. The two main hyper-parameters that can be searched are the
influence of textureness over smooth loss dampening κ and the relative weight λ with
which the smooth loss is applied, compared to the photometric loss.

Namely, given a smooth loss Ls(ξ, κ), we apply the loss

L(θ) = Lp + λLs(ξ, κ)
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Figure 4.14: Hyper-parameter search for λ and κ for our two scenes. An ideal (λ, κ)
value should maximize the metricM

It should be noted that for any loss function Ls, either λ or κ being 0 is equivalent to
no smooth loss applied.

Figures 4.14 and 4.15 present the results of a logarithmic grid search for parameters
λ and κ. Figures 4.16 and 4.17, present optimization results on our toy problems after
selecting λ and κ maximizing measureM for each loss.

Surprisingly, the diffusion methods (robust or regular) tend to the best results, even
for our infinite plane in Horizon.

This can be mitigated by three observations:

• As shown figure 4.15, performance on Horizon Scene is very erratic for diffusion
loss, for an unknown similar scene, there is a chance that the chosen hyperparam-
eters (λ, κ) will perform very poorly. This is mostly due to not respecting the uniform
background requirement, because the sky gets diffused with the foreground depth.

• It can be observed figure 4.17 that for Horizon scene, diffusion losses actually
worsen over time after reaching a very good depth map, while gradient diffusion
losses seem to keep going down until the end of the optimization. This shows that
gradient diffusion losses may be more robust to extended training workflows which
may happen when no ground-truth is available at validation time.

• When looking at parameter change robustness figures 4.14 and 4.15, gradient dif-
fusion optimum appears to be more evenly distributed, without a strong peak at
optimum. As a consequence, considering a different set of scenes would probably
mean a set of optimal hyper-parameters somewhat different, gradient diffusion will
probably outperform regular diffusion
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Figure 4.15: Logarithmic error (LE) for our two scenes, using different values of λ and κ.
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Figure 4.16: Result of a photometric optimization with optimal weights λ and κ for our 6
different smooth losses on the Flower scene after 104 iterations. Learning rate is 0.15
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Figure 4.17: Result of a photometric optimization with optimal weights λ and κ for our 6
different smooth losses on the Horizon scene after 104 iterations. Learning rate is 0.15.
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Using Occlusion Module

Decent results using only smooth loss regularization have to be mitigated with the fact that
foreground has a totally different color distribution than background. Which then makes
the assumption of high color gradient for depth discontinuities plausible. But as seen
figure 4.16, this has to be done with a compromise on textured planes (with no depth
discontinuity), and the foreground is not perfectly determined. Keeping a κ parameter
high enough to get good results on foreground worsens the background and especially
the occlusion zones.

To check the relevance of our proof of concept occlusion mapper, we test this regu-
larization with our toy problem, using our different losses, after a new hyper-parameter
search. A quantitative comparison can be seen Table 4.1.

In every smooth loss, the quality indexM is higher, even making TVV Loss eventually
a good candidate. Both optimal κ and λ values are generally lower. This is expected for λ,
as now several image areas are filtered from the photometric loss. The smooth loss then
has no concurrency on them and thus don’t need to be high. However, this is unexpected
for κ, as we would have though that low κ values would be problematic for textured planes
such as the Flower scene. It can be noted that the robustness index ∆M is worsened for
diffusion and robust diffusion, while it was already their weak point, making gradient diffu-
sion and robust gradient diffusion an even more interesting candidate regarding training
on unknown datasets.

A final significant improvement of this occlusion regularization is the "ghosting" that
is not longer appearing on our Flower scene. Figure 4.18 shows a comparison for the
resulting depth map with regular diffusion.

This module then seems to help convergence without largely penalizing scenes with-
out occlusions.

A more sophisticated warping algorithm, seems to be an interesting improvement axis
to efficiently regularize occlusions.

4.7 Photometric losses

This section will discuss several variations on photometric loss. For our toy examples,
we only used the simple photometric loss, which is obtained with the absolute difference
between target images and reference frames, but some techniques have been studied to
cope with large displacement, or non constant luminosity.

4.7.1 Multi-scale photometric loss

Multi scale (or pyramidal) loss consists in trying to minimize the photometric reprojection
loss with multiple resolutions. This assumption is generally done to allow the photometric
loss to have a greater receptive field, this is the main idea behind optical flow method
and its variations such as Anandan [Ana89] or Farnebäck [Far03]. Indeed, when dealing
with large optical flow, due to a high displacement magnitude or a small depth, gradient
from photometric loss is not meaningful. Depth regularization can help, as it has been
shown with our tests, but it requires an overlap of areas with the same modality. In the
example of our occluded scene, if the foregrounds did not overlap, it would have been
impossible to make the depth converge. As a consequence, the maximum optical flow
over which foreground objects don’t overlap and thus make depth impossible to converge
directly depends on the size of foreground objects.

As a consequence, if we have a small foreground zone, without multi-scale loss, we
might be unable to learn from it. However, for multi-scale loss to be usable, we would
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Without occlusion module: λ = 30, κ = 0.3

With occlusion module: λ = 1, κ = 0.3

Figure 4.18: Comparison of a simple optimization (first two rows) and an optimization
using occlusion module (last two rows). Optimal parameters for regular diffusion loss
are used. Blacked parts of warped images are ignored thanks to our occlusion module.
Thanks to this, the usual ghost effect of depth on background is avoided.



88 4.7. Photometric losses

ODM
TV Loss 7 3

κ 1 0.1
λ 1 1
M 0.34 0.63
∆M 0.45 0.44
LE (Horizon) 0.37 0.36
LE (Flower) 0.48 0.24

ODM
TVV Loss 7 3

κ 3 0.3
λ 1 0.1
M 0.36 0.74
∆M 0.31 0.15
LE (Horizon) 0.86 0.26
LE (Flower) 0.36 0.16

diffusion 7 3

κ 0.3 0.3
λ 30 1
M 0.67 0.86
∆M 0.32 1.05
LE (Horizon) 0.42 0.12
LE (Flower) 0.16 0.10

robust diffusion 7 3

κ 0.3 1
λ 100 1
M 0.69 0.84
∆M 0.52 0.62
LE (Horizon) 0.44 0.07
LE (Flower) 0.12 0.14

gradient diff 7 3

κ 0.3 0.3
λ 30 0.3
M 0.54 0.77
∆M 0.11 0.15
LE (Horizon) 0.36 0.16
LE (Flower) 0.32 0.17

robust
gradient diff

7 3

κ 0.3 0.3
λ 30 0.3
M 0.57 0.77
∆M 0.23 0.14
LE (Horizon) 0.40 0.12
LE (Flower) 0.29 0.20

Table 4.1: Best hyper parameters found and resulting quality indicators, when occlusion
detection module (ODM) is active and when it is not. Red measures are to maximize,
blue ones are to minimize
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need to downscale the picture enough for the foreground zones to be less than one pixel
across. This is required for gradients to be useful. In practice, this could require to
downscale the picture a lot, with the loss of texture and precision that comes with it

Another important element is that as shown in DepthNet and almost every variation
of FlowNet [Dos+15], multi-scale training of a wanted map (be it optical flow, stereo dis-
parity or depth) is very beneficial to the network, even in a supervised manner. It has
been shown by Godart [GMAB18] that multi-scale learning for auto-supervision was not
beneficial for the photometric loss, but rather for the network. In this work, he outputted
downscaled depth maps, but did not use it to make a downscaled photometric error. In-
stead, he upscaled it to get a full scale photometric error, and could still easily make the
network converge, better than with the highest scale depth output alone.

Besides, multi-scale photometric error can trigger specific error, because the down-
scaling operation is similar to a low pass filter. As a consequence, high frequency pattern
will lose their textureness on smaller pyramidal levels. This is one of the greatest difficul-
ties of in-car environment datasets such as KITTI[Gei+13] or Cityscapes[Cor+16], where
the road which is normally very textured appears homogeneous at low resolution. The
basic idea behind this problem is that multi-scale photometric error is not robust where
pyramidal refinement is not.

It thus appears that multi-scale photometric error is useful only at the beginning of
the training, the same way pyramidal refinement is only useful when optical flow error is
above one pixel.

The recommended training schedule can introduce multi-scale photometric error, but
should be dismiss it as soon as the network can converge without it. When considering
small enough displacements, it might never be useful, this is the case for KITTI where
convergence is already possible at the beginning. Multi-scale photometric loss might
also be dispensable when considering a pretrained network if the network performance
is already decent enough.

4.7.2 Minimal loss sampling

Minimal loss sampling has been introduced by Godard et al.[GMAB18] as a way to auto-
matically eliminate ambiguity. The assumption is the same as the one that made smooth
losses work well in the first place: each ground (e.g. background or foreground) in the
image has a specific color distribution. As a corollary, color differences of pixels from the
same ground will be significantly lower than for colors of pixels from different planes.

When considering several inverse warps at the same time, we get multiple photomet-
ric loss maps. Minimizing the pixel wise minimal difference is deemed to be equivalent to
applying optimization only on colors from the same ground.

Lp = ∑
p∈Ω

min
k

(
d(It − Ĩtk→t)(p)

)
The consequence of this is that suppressing "ghosting" is possible for occluded areas,

provided there exists another frame where that same area is not occluded. This is for
example the case in the Flower scene of our toy problem.

The main advantage of this technique is its simplicity, with no need to compute any
custom module, and no computational overhead.

When testing with our toy problem, we can see figure 4.19 that indeed, no false pos-
itive can be seen on the background. However, foreground depth does not succeed in
converging to right values, even with a very high smooth loss. The reason why the con-
vergence is so poor in our case while it has shown great results and adhesion elsewhere
[Cas+19] needs further investigations.
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It might be due to the lack of stochasticity. Indeed, it appears that convergence is
stopped very quickly, being stuck in a local minimum very specific to our example. Con-
cretely, when adding noise to our examples at each optimization step, minimal sampling
was improved.

Figure 4.19: Result on Flower scene, with regular diffusion smooth loss. No ghost effect
can be seen around the foreground depth, but it performs poorly on foreground depth.

4.7.3 Photometric distance

Since the beginning we worked with the simplest form of photometric distance, which
is the absolute difference between color values. However, this assumes that images
rightly projected have the exact same color. This is problematic as in reality some ex-
trinsic scenes parameters can change. For example, light conditions can change and re-
flectance for non Lambertian surfaces makes the texture appear totally differently. Even
camera parameters can change gradually such as white balance and auto-exposition.
Some effects such as light changes can be assumed to change slowly and be neglected,
some other effects such as auto-exposition when the camera goes out of a tunnel, or
reflection patterns cannot be neglected. See an example figure 4.20. The following loss
tries to address that problem by computing variations of correlation rather than absolute
difference. This is particularly useful for changes of exposition.

Structural Similarity (SSIM)

As suggested subsequently by Zhao and Godart [Zha+15; GMB17], raw pixel difference
can be coupled with structural similarity (SSIM) [Wan+04] maximization, in order to have
a more natural quality measure. This has later been confirmed to yield good results
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Figure 4.20: Example of change of luminosity inside a video, when entering the tunnel,
the camera rises the exposition, and corresponding point have now different colors.

[GMAB18; Cas+19; MWA18; YS18; WB18]. SSIM (Eq. 4.27) can be decomposed into
the product of three functions, each measuring a specific characteristic, detailed Eq. 4.28.
l for luminance, c for contrast and s for structure. α, β, and γ are their relative weights.
Usually α = β = γ = 1, for simplicity and readability, but next notations will still hold for
different values. C1, C2 and C3 are arbitrary values, made to avoid edge cases, where
denominators are too low. µ and σ are the local mean and variance operators, estimated
by convolving the images X and Y with Gaussian kernels G of a given size (usually 3× 3)
Eq. 4.31.

SSIM(X, Y) = l(X, Y)αc(X, Y)βs(X, Y)γ (4.27)

l(X, Y) =
2µXµY + C1

µ2
X + µ2

Y + C1
(4.28)

c(X, Y) =
2σXσY + C2

σ2
X + σ2

Y + C2
(4.29)

s(X, Y) =
σXY + C3

σXσY + C3
(4.30)

µX = G ∗ X (4.31)

σ2
X = G ∗ X2 − µ2

X (4.32)
σXY = G ∗ XY − µXµY = G ∗ (X − µX)(Y − µY) (4.33)

The SSIM function is a quality measure, which maximum value is 1, and minimum is
-1. l and c have values within [0, 1] and s has values within [−1, 1]. In order to avoid too
much computation, C3 is usually set so that C3 = C2

2 which simplifies SSIM equation into
Eq. 4.34.

SSIM(X, Y) =
(2µXµY + C1)(2σXY + C2)

(µ2
X + µ2

Y + C1)(σ2
X + σ2

Y + C2)
(4.34)

Nevertheless, general equation 4.27 can help grasp what values are actually mea-
sured and thus what is optimized when trying to maximize this measure by gradient as-
cent. An important point to note is that these functions are rather independent of one
another. Namely, the function l is only a function of means µX and µY, while being invari-
ant to variance and correlation, the function c is a function of variance and s (roughly) a
function of correlation when C2 is negligible compared to σXσY.
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SSIM(X, Y) = l(µY, µX)c(σX, σY)s(X̂, Ŷ)

X̂ =
X − µX

σX

If we try to differentiate SSIM relative to X, we get

∇SSIM = cs∇l + ls∇c + lc∇s

The way to understand this is when trying to maximize SSIM, gradients of a function
are dampened by the others. For example, when mean values don’t match, l will be very
low, and thus functions c and s won’t be maximized. It can be problematic if at the be-
ginning of our optimization the images patches are too dissimilar, for example when the
optical flow is too high. As a consequence, it is a good idea to mix it with the more tra-
ditional L1 distance, at least at the beginning. However, this loss adds some robustness:
for a problematic sample with changing exposition (e.g, when exiting a tunnel), the differ-
ence of luminance and contrast lowers the SSIM gradient, and thus optimization is less
effective on this sample. This loss is robust to changes of luminance in the sense that it
filters them out of the optimization. In most works already mentioned [GMB17] [WB18]
[YS18], [MWA18], [Cas+19], the photometric is then a weighted sum of the L1 loss and
DSSIM (the opposite version of SSIM, which needs to be lowered)

Lp( Ĩ, I) = (1− α)∑
i

‖ Ĩ − I‖1

|Ω| + α
1− SSIM( Ĩ, I)

2

It must also be noted that correlation is in fact the exact opposite of mean square error
of normalized vectors (up to a constant value), as quickly shown Eq. 4.35. Likewise, the
functions l and c can be interpreted as mean square errors, dampened by the denomi-
nator (because its value does not change much). This makes sense when considering
the initial justification for SSIM, inspired by the human visual system, which supposedly
has a relative scale. However, for us, this may not be the best assumption, because the
higher the values X and Y we will have to match, the lower the gradient will be, inducing
a vanishing gradient problem.

s(X̂, Ŷ) =
σXY

σXσY

= G ∗ X̂Ŷ

=
1
2

G ∗ (X̂
2
+ Ŷ

2 − (X̂ − Ŷ)2)

= 1− 1
2

G(X̂ − Ŷ)2 (4.35)

Additionally, figure 4.21 shows the profile of a curve x 7→ 2xy+C
x2+y2+C . It appears obvious

that optimization is impossible if x and y don’t have the same sign. It must not be forgotten
especially for the function l since in most deep learning training workflow, images are
normalized before being fed to the network. Our advice if one wants to use SSIM is then
to normalize images for the network, but not for the photometric loss.

For all of these reasons, SSIM seems suited to reach a better optimum, and benefit
from being a widespread image quality metric, but can probably be improved in terms of
gradient based optimization. In fact, in all the works that use it for image reconstruction
problems, we have not seen other justification than the fact that it yields better results.
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Figure 4.21: graph of the function f : (x, y) 7→ 2xy+C
x2+y2+C used for l and c in SSIM (here,

C is 0.012). This function is only convex around its maximum, which make its gradient
based optimization difficult

4.8 Conclusions on literature review for unsupervised depth
training

In our toy problem, we have been able to identify and inspect different optimization meth-
ods for image reconstruction. Unfortunately, it turns out most of them are only motivated
by heuristics, and thus can be improved by physical and theoretical considerations. It
appears that the end goals are well defined: a smooth inverse depth map, with possible
discontinuities. However, the loss gradients are not heaviliy engineered, as it can be seen
e.g. for TVV Loss and SSIM distance.

This tells us that this problematic is still in its "proof of concept" phase. The same
way a simple network like VGG [SZ14] was improved into Inception [Sze+15], ResNet
[He+16], and finally DenseNet [Hua+17], we hope photometric distances and smooth
losses will be refined to more robust and stable equivalent that could potentially lead to a
true unsupervised learning, without having an annotated validation set for early stopping.
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This chapter presents our proposition for an unsupervised training of DepthNet, with
robustness in mind. From the study made chapter 4 on unsupervised depth learning, we
propose to discuss and adapt the work SFMLearner from Zhou et al. [Zho+17] and its
variations in order to perform fine-tuning on real videos for our DepthNet network without
ground-truth.

This chapter has been the subject to the following publication
[Pin+18]: Clément Pinard, Laure Chevalley, Antoine Manzanera, and David Filliat.

“Learning structure-from-motion from motion”. In: ECCV GMDL Workshop. Munich,
Germany, Sept. 2018. URL: https://hal.archives-ouvertes.fr/hal-01995833.

5.1 Shortcomings of SFMLearner

As a reminder, the SFMLearner, presented section 4.3.1 trains a neural network (Disp-
Net) to output inverse depth of an image, along with another network (PoseNet) to output
frame poses of a particular sequence.

Whereas PoseNet takes all the images as input, DispNet only takes one picture It.
As such, this network is doing inverse depth from context and appearance. It should
also be noted that KITTI [Gei+13] was the main dataset for this particular unsupervised
learning task. Unfortunately, this dataset, which is only representative of car movements,

https://hal.archives-ouvertes.fr/hal-01995833
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is not really a true 6 degrees of freedom dataset, and lacks appearance diversity. As a
consequence, depth from context is a very good strategy here. Indeed, it is mentioned by
Zhou et al. [Zho+17] that feeding multiple frames to a network did not yield better results
in their training workflow on KITTI dataset.

As discussed chapter 2, in the context of drone videos, the dataset can present cam-
era movements with only 3 degrees of freedom since we don’t have rotation, but flying
cameras will present a huge variety of contexts and appearances, with different kinds of
altitude and orientation, in addition to different ground profiles on which a car could not
drive.

Another important point to note is the fact the scaling factor uncertainty is never ex-
plicitly solved, while DepthNet solves it by assuming constant displacement magnitude
(as explained section 3.5.1), which is then compared against actual displacement mag-
nitude. Here, no assumption is done on PoseNet translation magnitude, and the only
supervision comes from the resulting optical flow and its corresponding warping, which
is proportionate to both PoseNet displacement magnitude and disparity. As such, even
if the two networks converge consistently so that the optical flow is well estimated, the
depth and poses alone are only known up to a scale factor compared to ground truth.

Following discussion from section 2.3.1, we will display typical scale invariant quality
measures for information purposes only. The actual measure we will use to evaluate and
compare our solution asks for both translation estimation and depth estimation, to make
the scale factor solvable with translation magnitude measured from dedicated sensors.
The two different quality evaluations will be denoted in tables 5.1, 5.2 and 5.3 by the scale
factor column. When using standard relative depth measurement, the indication GT (for
Ground Truth) is used, when using translation magnitude, the letter P (for Pose) is used.

5.2 Workflow presentation

Inspired from [Zho+17], we propose a framework for training a network similar to Depth-
Net, but from unlabeled video sequences. The approach is slightly different from Sfm-
Learner since our network takes two stabilized images for input instead of only one. The
approach can be decomposed into three tasks, as illustrated by Fig. 5.1:

• From a certain sequence of frames (Ii)0≤i<N, randomly choose one target frame It
and one reference frame Ir, forming a pair to feed to DepthNet.

• For each i ∈ J0, NJ , estimate pose T t→i = (Ri, ti) of each frame Ii relative to the
target frame It. Detailed section 5.2.1.

• Compensate rotation of reference frame Ir to ISTAB
r before feeding it to DepthNet,

leading to the same situation as original DepthNet supervised training. Detailed
section 5.2.2.

• Compute the unnormalized depth map θ̃t. DepthNet(ISTAB
r , It) = θ̃(ISTAB

r , It)

• Normalize the translation to constrain it so that the displacement magnitude tr with
respect to Ir, is always the same throughout the training. This point is very impor-
tant, in order to guarantee the equivariance between depth and motion, imposed by
the original DepthNet training procedure that makes network rely mostly on motion
and not on appearance. Detailed section 5.2.3.

• As the problem is now made equivalent to the one used in [Zho+17], perform a
photometric reprojection of It to every other frame Ii to Ĩi→t, thanks to depth θ̃t
of It and poses T t→i computed before. The resulting frame Ĩt is then compared
against It to compute loss from photometric dissimilarity. Detailed section 5.2.4.
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Ir It

ISTAB
rPoseNet DepthNet

Inverse
rot

Inverse
Warp

Photo
loss

∀i, tNORM
i = ti

d0
ε+‖tr‖

T t→i = (Ri, ti)

Figure 5.1: General workflow architecture. target and reference indices (t and r) are
chosen randomly for each sequence (even within the same batch); output transformations
of PoseNet are compensated so that T̂ t→t is identity. d0 is a fixed nominal displacement.

Our algorithm, although relying on very little calibration, needs to get consistent focal
length. This is due to the frame difference being dependent on focal length. However,
this problem is easily avoided when training on sequences coming from the same cam-
era. Also, as shown by Eq. 4.2, camera intrinsic matrix K needs to be known to compute
warping and subsequent photometric reprojection loss properly. In practice, assuming
optical center in the center of the focal plane worked for all our tests; this is corroborated
by tests done by [MWA18] where they used uncalibrated camera, only knowing approxi-
mate focal length.

Finally, this algorithm can be simplified for stabilized videos, for which no rotation
needs to be estimated, and no stabilization needs to be done before feeding Ir to the
network.

5.2.1 Pose estimation

PoseNet, as initially introduced by Zhou et al [Zho+17] is a classic fully convolutional
neural network that outputs 6 degrees of freedom (or 3 in the case of stabilized videos)
transformation pose descriptor for each frame. Output poses are initially relative to the
last frame, and then compensated to be relative to the pose of the target frame. This way,
PoseNet output is not dependent on the index of the target frame. Besides, computing
by default with respect to the last frame makes the inference much more straightforward,
as in real condition, target frame on which depth is computed should be the last of the
sequence, to reduce latency.

5.2.2 Frame stabilization

For the general case with 6 degrees of freedom, in order to cancel rotation between target
and reference frame, we can apply a warping using rotation estimation from PoseNet.
When considering a transformation without translation, Eq. 4.2 no longer depends on the
depth of each pixel, and becomes Eq. 5.1. As such, we can warp the frame to stabilize it
using orientation estimation from PoseNet, before computing any depth.

pr
t = KRrK−1 pt (5.1)

As mentioned earlier, UAV footages are either stabilized or with a reliable estimated
orientation from inertial sensors. This information can be easily leveraged in our train-
ing workflow to supervise pose rotation, giving in the end only translation to estimate
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to PoseNet. In addition, when running in inference, no pose estimation is needed as
DepthNet does not depend on translation estimation, and PoseNet is not used.

5.2.3 Depth computing and pose normalization

For depth to be provided assuming a constant displacement magnitude, the pose of the
reference frame must be normalized to correspond to that magnitude.

As such, to get consistent poses throughout the whole sequence, we apply the same
normalization ratio, as shown in Fig. 5.1. The resulting magnitude is thus only known to
be scaled to d0 between It and Ir. Every other translation might be of different magnitude.

∀i, tNORM
i = ti

d0

ε + ‖tr‖
(5.2)

The main drawback of normalizing translations is the lack of guarantee about absolute
output values. Since we only consider translations relatively to the reference, translations
are estimated up to a scale factor that could be - when they are very large - leading
to potential errors for rotation estimation, or - when they are very close to 0 - leading
to float overflow problems. To overcome these possible issues, along with classic L2
regularization to avoid high values, we add a constant value ε to the denominator. The
normalization is then valid only when ε� ‖tr‖.

5.2.4 Loss functions

Following what was discussed on chapter 4, our training loss will be composed of a pho-
tometric loss, and a smooth loss: we chose the gradient diffusion loss with optimal pa-
rameters κ and λ defined with the hyper-parameter search on the toy problem presented
section 4.6.2.

Our photometric loss Lp is a mixture of mean L1 distance and DSSIM, α being an
empirical weight set to 0.15.

Lp = ∑
i
(1− α)

‖ Ĩi→t − It‖1

|Ω| + α
1− SSIM( Ĩi→t, It)

2
(5.3)

Ls = λLgdi f f (ξ, It, κ) =
λ

|Ω| ∑
p∈Ω

exp
(
−‖∇It‖2

κ2

)
× (∆ξ)2 (5.4)

For Ls, It is downscaled to fit ξ resolution.
Finally, we apply this loss to multiple scales s of DepthNet outputs, multiplied by a

factor giving more importance to high resolution. In accordance with what was discussed
section 4.7.1, the loss Ls

p is obtained with full scale target image and warped image from
upscaled output of DepthNet.

Our final loss becomes

L = ∑
s

1
2s

(
Ls

p + Ls
s

)
(5.5)

5.3 Training datasets

Our experiments were made on three different datasets. KITTI [Gei+13] is one of the
most well known datasets for training and evaluating algorithms on multiple computer
vision tasks such as odometry, optical flow or disparity. It features stereo vision, LiDAR
depth measures and GPS / RTK coupled with IMU for camera poses. During training
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we only used monocular frames and IMU values when supervising with orientation. We
used LiDAR for evaluation. We applied the same training/validation/test split as [Zho+17]:
about 40k frames for training and 4k for evaluation. We also discarded the whole set
scenes containing the 697 test frames from the Eigen [EPF14] split. We also constructed
a filtered test set with the same frames as Eigen, but discarding 69 frames whose GPS
position uncertainty was above 1 m. This set was used when displacement data was
needed.

We also conducted experiments on StillBox, the dataset used in supervised DepthNet
section 3.4.1, in which we added random rotations (i.e. we draw an initial rotation speed
that remains the same through the sequence). As this dataset was initially developed to
have depth independent on context, we can already predict that performance of single
frame depth network like SFMLearner [Zho+17] will not be good. The dataset contains
1500 training scenes and 100 test scenes, ie 30k training frames and 2k validation frames.

Finally, we trained our network on a very small dataset of UAV videos, taken from
the same camera the same day. We used a Bebop2 drone, with 30 frame per seconds
videos, and flew over a small area of about one hectare for 15 minutes. Some of the
flights have low displacement sequences and even hovering states where the drone is
completely motionless. The training set contains around 14k frames while the test set is
a sequence of 400 frames. This dataset is not annotated, and only subjective evaluation
can be done.

5.4 Experiments

5.4.1 Qualitative results

Figure 5.2 presents a qualitative comparison between SFMLearner and Unsupervised
DepthNet, on KITTI and StillBox. If results are comparable on KITTI, DepthNet is much
sharper on StillBox.

5.4.2 Implementation details

As for supervised training chapter 4, we used PyTorch [Pas+17] for all tests and trainings.
We used Adam optimizer [KB14] with learning rate of 2× 10−4 and β1 = 0.9, β2 = 0.999.
The full source code is available on Github1

5.4.3 Testing methodology for DepthNet

To stabilize the input of the network, we take a sequence of the same length as PoseNet
input (here, 5 frames), with the goal of computing depth of the last frame. When training
was done with orientation supervision, we stabilized the frames before feeding them to
DepthNet, without the help of PoseNet.

Besides, as DepthNet output is a function of apparent movement, we have several
options for the frame pairs we can use to compute depth. Our method relies on taking a
pair for which the mean output of DepthNet is the closest of an arbitrary chosen value set
to 50m, regardless of the dataset. The output is then rescaled with the ratio of nominal
displacement. A more sophisticated method for depth inference with stabilized frames
will be presented on chapter 6.

1https://github.com/ClementPinard/unsupervised-depthnet, retrieved 07/24/2019

https://github.com/ClementPinard/unsupervised-depthnet


100 5.4. Experiments

Input Ground truth SFMLearner [Zho+17] Ours

Figure 5.2: Comparison between our method and SFMLearner. [Zho+17] on StillBox
and KITTI [Gei+13].

5.4.4 Quantitative results

In addition to using standard measurements from [EPF14], our goal is to measure how
well a network would perform in real conditions. As stated in Section 2.3.1, depth map
scale factor must be determined from reasonable external data and not from explicit depth
ground truth.

We thus compare our solution to SFMLearner [Zho+17] where the output is multiplied
by the ratio between estimated displacement from PoseNet and actual values. For KITTI,
displacement is determined by GPS RTK, but as we only need magnitude, speed from
wheels would have been sufficient.
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Input SFMLearner [Zho+17] Ours

Figure 5.3: Subjective comparison of disparity maps between SFMLearner [Zho+17] and
our method on a small UAV dataset.

Figure 5.4: Some failure cases of our method on KITTI. First column is a detail of a
larger image. The foreground car is moving forward and it’s detected as far away, while
the background car is moving toward us and is detected as close. Second column is a
poorly textured road.
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5.4.E

xperim
ents

Method
training

set
scale
factor

supervision MAE MRE MLE SAE SLE P1.25 P1.252 P1.253

Eigen et al. [EPF14] Fine K GT D - 0.203 - 6.307 0.282 0.702 0.890 0.958
DORN [Fu+18] K GT D - 0.072 - 2.727 0.120 0.932 0.984 0.994

SFMLearner [Zho+17] K GT 7 - 0.183 - 6.709 0.270 0.734 0.902 0.959
SFMLearner ∗ K GT 7 3.455 0.185 0.191 6.410 0.269 0.714 0.899 0.962
DDVO [WB18] K GT 7 - 0.148 - 5.496 0.226 0.812 0.938 0.975
Casser et al. [Cas+19] K GT 7 - 0.141 - 5.291 0.215 0.816 0.945 0.979

Supervised DepthNet S P D + O 7.872 0.650 0.446 10.528 0.546 0.356 0.613 0.775
SFMLearner ∗ K P 7 4.629 0.296 0.287 7.215 0.352 0.542 0.817 0.918
Unsupervised DepthNet K P 7 4.669 0.322 0.262 7.967 0.356 0.624 0.838 0.916
Unsupervised DepthNet S→ K P D+O→ 7 4.078 0.268 0.222 7.048 0.304 0.683 0.883 0.944
Unsupervised DepthNet K P O 4.485 0.301 0.251 7.504 0.335 0.624 0.851 0.927
Unsupervised DepthNet S→ K P D+O→ O 4.001 0.262 0.221 6.872 0.303 0.687 0.883 0.943
∗ this is our reimplementation, available on https://github.com/ClementPinard/SfmLearner-Pytorch (accessed 02/12/2019)

Table 5.1: Quantitative tests on KITTI[Gei+13] Eigen split [EPF14]. Measures are the same as in Eigen et al. [EPF14]. For blue measures, lower
is better, for red measures, higher is better. For training, K is the KITTI dataset [Gei+13], S is the Still Box dataset. For scale factor, GT is ground
truth, P is pose. When scale was determined with pose, we discarded frames where GPS uncertainty was greater than 1m. For supervision, D is
depth and O is orientation. → denotes fine tuning.

https://github.com/ClementPinard/SfmLearner-Pytorch
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Method
scale
factor

supervision
Occlusion
mapper

MAE MRE MLE SAE SLE P1.25 P1.252 P1.253

Supervised DepthNet P D + O 7 3.822 0.224 0.229 6.864 0.446 0.718 0.856 0.927
SFMLearner ∗ GT 7 7 11.429 0.593 0.633 17.173 0.461 0.479 0.656 0.756
SFMLearner ∗ P 7 7 14.324 0.816 0.461 19.447 0.726 0.302 0.542 0.696
Unsupervised DepthNet P 7 7 10.356 0.437 0.387 10.236 0.516 0.476 0.697 0.822
Unsupervised DepthNet P O 7 5.248 0.259 0.232 9.600 0.380 0.709 0.887 0.928
Unsupervised DepthNet P 7 3 10.412 0.435 0.383 15.450 0.510 0.503 0.716 0.820
Unsupervised DepthNet P O 3 5.060 0.212 0.206 9.262 0.333 0.729 0.899 0.943
∗ this is our reimplementation, available on https://github.com/ClementPinard/SfmLearner-Pytorch (accessed 02/12/2019)

Table 5.2: Quantitative tests on StillBox, no pretraining has been done. The supervised DepthNet is here to give an hint on a theoretical limit since
it uses the same network, but with depth supervision

https://github.com/ClementPinard/SfmLearner-Pytorch
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Table 5.1 presents quantitative results compared to prior works on KITTI dataset.
Prior works are divided into three categories. The first one with Eigen et al. [EPF14]
and DORN from Fu et al. [Fu+18] shows the single frame depth network trained with
supervision, DORN being the current state of the art. It serves at giving an idea of
theoretical limit. The second one with SFMLearner [Zho+17] and DDVO from Wang et al.
[WB18] shows unsupervised methods where moving scenes are not explicitly considered.
Last category with Casser et al [Cas+19] shows the state of the art on unsupervised
training of depth with monocular camera on KITTI, which takes care of moving scenes
with the help of an object detection network. These different works show that KITTI is
indeed a dataset with non negligible moving scenes, which will be problematic for our
solution, and that neural networks are extremely good at inferring depth from a single
image on a dataset like KITTI.

We tried 5 different versions of our network. The first one is the exact same as su-
pervised DepthNet, only trained on StillBox. It serves as a baseline purpose, without
fine-tuning. The other four configurations are training from scratch or fine-tuning from
StillBox, and training with orientation supervision or not. For our 5 versions we used
occlusion module detection, our tests determined that this module had no influence on
KITTI. This is probably due to the fact that contrary to our Stillbox dataset and typical
drone videos, objects are never extremely close to the camera, and thus few occlusions
happen and when they do, they induce an error that is neglectible compared to moving
objects.

As we might expect, on KITTI our method fails to converge as well as single image
methods using classic relative depth quality measurement. However, when scale factor is
determined from poses, we match the performance of the adapted method from [Zho+17].
It can also be noted that fine-tuning provides a better starting point for our network, and
that when available on a training set, orientation supervision is very advantageous.

When trying to train a depth network with stabilized videos, it is then strongly recom-
mended to do a first supervised training on a synthetic dataset such as StillBox.

Some failed test cases can be seen on Fig.5.4. The main sources of error are moving
objects and poorly textured areas (especially concrete roads), even though we applied
depth smooth geometric loss. Our attempt at explaining this failure is the large optical flow
value on a low textured area, meaning matching spatial structures is difficult. However,
as KITTI acquisition rate is only 10 fps, we believe this problem would be less common
on regular cameras, with typical rates of 30 fps or higher.

Table 5.2 presents results on the updated Still Box dataset. SFMLearner [Zho+17]
performs surprisingly well given the theoretical lack of visual context in this dataset. How-
ever, our method performs better, whether from orientation supervision or completely
unsupervised. We also compare it to supervised DepthNet. This can be considered a
theoretical limit for training DepthNet on Still Box since it is completely supervised, and
our unsupervised training method is very close to it, indicating the good convergence of
our model and thus the validity of our training algorithm and loss design.

Note on Hyperparameter Search

As already discussed in chapter 4, the key idea behind our choice of regularization hyper
parameters, and especially the smooth loss we chose, is domain-independence. That’s
why we chose gradient diffusion loss and not diffusion loss in the first place although it
did perform better on the toy problem presented at section 4.6.2, because the optimum
was more evenly distributed than diffusion.

For reference, in the context of unsupervised training of depth for KITTI, there has
been a consensus on TV Loss for the best results. This loss is then particularly suited for
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the in-car environment, but not necessarily for drone videos.
If we wanted to test the domain independance hypothesis, we would have needed to

test unsupervised training with every possible loss, with every possible hyperparameter.
This was possible on a simple toy problem as a single training only required one minute,
but is unfortunately much harder to do on a true unsupervised training task, where a
single training takes around 10 hours. It might be a future work to consider with efficient
sampling techniques such as Bayesian optimization [WHD18].

5.4.5 Domain adaptation results

To test our method on our small UAV dataset, we first did a training on Still Box, then
an unsupervised fine tuning. Likewise, when using SFMLearner method [Zho+17], we
pretrained on KITTI before fine tuning on our video.

Fig.5.3 compares SFMLearner [Zho+17] and our method on some test frames of our
small UAV dataset. Our method shows much better domain adaptation when fine tuning in
a few-shot learning fashion. Especially for foreground objects, as SFMLearner [Zho+17]
blends it with the trees near the horizon, which is very problematic for navigation. A more
thorough qualitative comparison can be viewed in video 1.

Table 5.3 and figure 5.5 compare domain robustness without any training: we tried in-
ference on an upside-down KITTI test set, with ground up and sky down, and our method
performs much better than SFMLearner [Zho+17], which is completely lost and performs
worse than inferring a constant plane. However, contrary to Supervised DepthNet which
performs as well on the reverse version of the test set, our method is not as performing as
with regular KITTI (not reversed). This shows that our network may have learned to infer
depth from both motion and context, which can be considered as a compromise between
SFMLearner relying only on context and Supervised DepthNet relying only on motion.

Input Ground truth SFMLearner [Zho+17] DepthNet

Figure 5.5: Comparison between our method and SFMLearner [Zho+17] on a normal
example from KITTI [Gei+13] and its upside-down variation.

5.5 Conclusion on unsupervised DepthNet

We have presented a novel method for unsupervised depth learning, using not only depth
from context but also from motion. This method leverages the context of stabilized videos,
which is a midway between common use cases of stereo rigs and unconstrained ego-
motion. As such, our algorithm provides a solution with embedded deployment in mind,
especially for UAVs navigation, and requires only video and inertial data to be used.

Our method is also much more robust to domain changes, which is an important
issue when dealing with deployment in large scale consumer electronics on which it is
impossible to predict all possible contexts and situations, and our method outperforms
single frame systems on unusual scenes.

1https://stillbox.ensta.fr/demo_depthnet.mp4

https://stillbox.ensta.fr/demo_depthnet.mp4
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Supervised DepthNet S P D + O 7.716 0.637 0.443 10.499 0.548 0.359 0.614 0.774
Constant Plane - GT - 7.547 0.458 0.476 12.124 0.600 0.296 0.547 0.752
SFMLearner [Zho+17] ∗ K GT - 8.433 0.551 0.551 12.469 0.680 0.255 0.482 0.668
SFMLearner [Zho+17] ∗ K P - 16.085 1.511 0.790 19.677 0.927 0.176 0.342 0.494
Unsupervised DepthNet S→ K P - 7.759 0.596 0.442 11.250 0.555 0.370 0.628 0.784
Unsupervised DepthNet S→ K P O 7.731 0.604 0.414 11.152 0.536 0.424 0.673 0.807

Table 5.3: Quantitative tests on upside-down KITTI [Gei+13]: sky is down and ground is up. No training has been done. Constant Plane outputs
the same depth for every pixel
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DepthNet in the wild
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This chapter aims at studying the possibilities of using our network DepthNet to get
real-time depth maps. More precisely, we consider a strategy to feed our network the
optimal frame pairs for real-time inference.

This chapter has been subject to the following publication
[Pin+17b]: Clément Pinard, Laure Chevalley, Antoine Manzanera, and David Filliat.

“Multi range Real-time depth inference from a monocular stabilized footage using a Fully
Convolutional Neural Network”. In: European Conference on Mobile Robotics. ENSTA
ParisTech. Paris, France, Sept. 2017. URL: https://hal.archives-ouvertes.fr/hal-
01587658

6.1 Simplifying the scale factor determination by normalizing
DepthNet

We learned depth inference from a moving camera, assuming its velocity is always the
same. As already discussed chapter 2, when running during flight, such a system can
deduce the real depth map estimation θ̃ from the network output and the drone displace-
ment, knowing that the nominal displacement was d0 (here 0.3m), and the temporal dif-
ference between the frames δt.

θ̃(t) = DepthNet(It, It−δt)
d(t,δt)

d0

d(t, δt) =
∥∥∥∫ t

t−δt V(τ)dτ
∥∥∥

In the context of a unconstrained displacement magnitude, the actual correct interpre-
tation of the output of DepthNet is a depth relative to the camera displacement and not
an absolute one, so its value should be a dimensionless quantity. To reflect the necessity

https://hal.archives-ouvertes.fr/hal-01587658
https://hal.archives-ouvertes.fr/hal-01587658
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Figure 6.1: Estimation-wise log error of supervised DepthNet64→128→256→512 on StillBox.

of having a reference displacement magnitude, we introduce the function β that outputs
a normalized version of the network output, which equals 1 when DepthNet reaches the
maximal depth considered during training (here 100m).

β : R6|Ω| → R|Ω|

I1, I2 7→ DepthNet(I1,I2)
θmax

and a dimension-less parameter

α =
θmax

d0

to estimate actual depth using the displacement magnitude d as the only distance
related factor.

θ̃(t) = αβ(It, It−δt)d(t, δt) (6.1)

6.2 Optimal frame shift determination

Depending on the depth distribution of the ground-truth depth map, it may be useful to
adjust frame shift δt. For example, when flying high above the ground with low speed, big
structure detection and avoidance requires estimating distance values that are outside
the typical range of any dedicated depth sensor. The logical strategy would then be to
increase apparent movement by increasing the temporal shift between the frame pairs
fed to DepthNet as inputs. More generally, one must provide inputs to DepthNet in order
to ensure a well distributed depth output within its typical range.

This technique assumes that increasing temporal shift indeed increases apparent
movement (and vice-versa for lowering temporal shift). This assumptions needs two con-
ditions to be fulfilled between two frames:

1. The acceleration is small enough so that speed can be considered constant: this is
the case for most smooth movements.
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2. The depth is changing slowly enough to be considered constant: This is not al-
ways true, especially when distance traveled between two frames is comparable to
measured depth. However, we assume this particular case to be rare.

The typical range is supposed to be a range of estimations where the error is minimal.
Figure 6.1 shows the estimation-wise error for DepthNet512 on StillBox with a minimum
between 40m and 90m (i.e. for β ∈ [0.4, 0.9]). This should not be confused with depth-
wise error presented at section 3.10: a neural network giving always the same value θ̃c
would have a depth-wise error of 0 at this particular distance. The inverse representation
of estimation-wise error gives us more information on what to expect for θ compared to
the estimated θ̃.

We then need to choose the optimal spatial displacement dopt and corresponding
temporal shift δt to minimize error on the next inference, by avoiding too low or too high
values of β. We chose the optimal displacement magnitude as:

dopt = d0
E(β)

βmean
=

E(θ̃)

αβmean

With E(θ̃) the mean of depth values and βmean the optimal mean output of β, e.g.
0.5. δ is then computed numerically from displacement estimation to get the frame shift
with the closest corresponding displacement magnitude possible. The mean E(θ̃) is
computed by discarding the extremal values, and especially maximal values (for example
the depth values of the sky) since they are not relevant for the actual depth values we
want to measure. It is worth noting that the median value of β could be used instead of
mean. Using mean here actually paves the way for a more general algorithm presented
section 6.3

In order to smooth potential noise in speed estimation that would result in a bad
displacement magnitude estimation, we smooth out the target displacement over time.
More specifically, we perform an exponential moving average (EMA) with an arbitrary
factor λ

dopt ← λdopt + (1− λ)
E(θ̃)

αβmean
(6.2)

The main limitation of this optimal frame shift determination is the multi-modality of
the depth distribution of a particular scene. In this case, computing mean of DepthNet
output might not be representative of any output value. A representative case would be
a scene with bimodal depth values at 10m and 100m (see an example figure 6.2): the
resulting displacement will be optimal for a depth of 50m, but neither for 10m nor 100m
where the objects of the scenes actually are.

6.3 Multiple shifts inference

As neural networks are traditionally computed within massively parallel architectures such
as GPUs, multiple depth maps can be computed efficiently at the same time in a batch,
especially for low resolution. Influence of batch size on inference speed has already been
discussed in section 3.6.1 and has been shown to induce a less than linear slowdown on
some architectures.

Batch inference of n frame pairs can then be used to compute depth with multiple
shifts δti. These multiple depth maps can then be combined to construct a higher quality
depth map, with high precision for both long and short range. We propose a dynamic
range algorithm, described figure 6.4 to compute and combine different depth maps.
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Figure 6.2: Example of a multi-modal depth distribution scene with corresponding depth:
foreground is much closer than mean depth and background further.

Figure 6.3: graph of function f , defined in equation 6.3

Instead of only one optimal displacement dopt from E(β), we use K-mean clustering
algorithm [Mac67] on the depth map to find n clusters on which each next input frame
pair will be constructed to focus on. The clustering outputs a list of n centroids ci(θ̃) and
corresponding dopt,i(t) and δti. n has to be decided before inference and usually ranges
from 1 to 4.

Final depth map is then computed from fusing these outputs using a weighted mean
for each pixel. Each weight is actually a linear interpolation from 0 to 1 according to
distance of β from a target value βmean. See figure 6.3 for a graph of the weight function.
That way, fusion will favor values that are closer to this optimal value. An ε value is
added to solve fusion when every depth map is off its wanted range. This fusion process
is very similar to exposure fusion [MKVR09], used in photography. Here, exposition is
replaced by depth value, and the weight are based on distance to βmean instead of Well-
exposedness.

One can see how when n = 1, this technique is similar to the one described equa-
tion 6.2.

wi(p) = f (β(It, It−δti , p)) = f (βi(p))
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f [0, 1] → [0, 1]

x 7→


ε if x < βmin

ε +
(

x−βmin
βmean−βmin

)
(1− ε) if βmin ≤ x < βmean

βmax−x
βmax−βmean

if βmean ≤ x < βmax

0 if x ≥ βmax

(6.3)

∀p ∈ Ω, θ̃ f (p) = α
∑i d∗i wi(p)βi(p)

∑i wi(p)

Or more simply

θ̃ f = α ∑
i

d̂iβi where d̂i =
d∗i wi

∑j wj

In the rare case of ∑i wi(p) = 0 ,meaning every β j(p) is above βmax, we take the con-
vention of ŵi(p) = +∞ and exclude this point from the K-mean clustering algorithm.

For our use-case, we set βmin = 0.1 , βmean = 0.5, βmax = 0.9 and ε = 10−3. i is the
index of frame shift, j, k are the spatial indices. Figure 6.5 shows a result of the proposed
algorithm for n = 2. Notice how the high shift detects buildings while low shift detects
trees.

A more thorough presentation of the qualitative results can be viewed in video 1.

1http://stillbox.ensta.fr/DepthNetResults.mp4(retrieved 07/24/2019)

http://stillbox.ensta.fr/DepthNetResults.mp4
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6.4 Training a specific depth range with a clamped DepthNet

As discussed at the end of chapter 3, on very far objects (e.g. the sky), any minor optical
flow caused by a default in stabilization will result in a massive error in depth. Moreover,
our network being very good at recognizing shapes and giving it a continuous depth, this
can result in the whole sky being computed as relatively close.

We thus propose an experimentation with a network designed for a simpler problem:
during training on StillBox dataset, we clamp depth from 10m to 60m, with a shift of 5
images (instead of 3 for DepthNet). These new parameters allow the network to only
focus on mid range objects, dismissing close and far objects. This training workflow is
very well suited for multiple shift depth inference. Every image pair will have a dedicated
depth to analyze, preventing the fusion to be bothered with redundant data, because of
the high initial range of DepthNet.

Figure 6.6 shows results for multiple synthetic 256x256 scenes with ground truth, along
with inference speed and a small noise added to camera initial orientation at each frame.
R(t) = R0 + Euler(N0µ(t)), with µ(t) being a 3-dimensional random unit vector and N0
a constant fixed to 0.001. We also report performance of a thin version of our clamped
network, that shows better results than DepthNet with 1 plane only in this noisy setup.
The thin network has the same depth, but every layer has half as many feature maps as
the original DepthNet.

It is worth noting that DepthNet Clamped and Tiny DepthNet Clamped are just experi-
mentations and no unsupervised fine-tuning workflow has been designed to be robust on
clamped depth values with multiple fused inferences.

6.5 Our proof of concept

In order to test our Network, we developed a small use-case using a Bebop drone from
Parrot. We were able to have a relatively good obstacle avoidance using DepthNet as a
depth provider for an depth-powered obstacle avoidance tool in the UAV.

6.5.1 Model Predictive Control

Model Predictive Control (MPC)[Ric+78] is a control strategy that can be used for obstacle
avoidance with a depth map [LH17]. This control algorithm has been internally developed
at Parrot as a tool for experimentation, and has been used off-the-shelf without any at-
tempt at improving it for the depth-map delivered by DepthNet. This tool expects a depth
map from any available source, be it from our network or a disparity map from a stereo
camera, or a point cloud from a Lidar.

This tool will correct a desired trajectory by either stopping or drifting around the ob-
stacle. We are particularly interested by the second use-case, as our depth method
needs motion.

6.5.2 Implementation details

The whole Obstacle avoidance proof-of-concept relies on Video streaming via Wifi into
a GPU powered computer (Nvidia Quadro M1000M). Along with the video, additional
information about the flight are embedded in the video stream, and extracted with Parrot
internal demuxer, called PDraw 2. That way, We can use speed and timestamps of the
received frames to apply the algorithm presented figure 6.4. The depth is then discretized

2Available at https://github.com/Parrot-Developers/pdraw, retrieved 07/24/2019

https://github.com/Parrot-Developers/pdraw
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Figure 6.5: real condition application of the multi-shift algorithm with DepthNet. Top left
is input. Last row are raw outputs of the network (from 0 to 100, corresponding to a β
from 0 to 1). Top right is fused output, capped up to 100m. Numbers in the upper left cor-
ner of raw inputs indicate respectively temporal frame shift and measured displacement
magnitude in meters. The UAV is flying forward at a speed of 1m.s−1 and an altitude of
≈ 12m.

Figure 6.6: results for synthetic 256x256 scenes with noisy orientation. DepthNet has
been tested with n = 1 and n = 2, DepthNet Clamped with n = 1 · · · 3 Tiny DepthNet
Clamped with n = 1 · · · 4. Y axis is Mean Relative Error (MRE), X axis is inference speed,
in ms on a Quadro M1000M GPU.
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Figure 6.7: Experimental setup for our proof of concept

Figure 6.8: Experimental Scene where the drone is expected to travel around obstacles
when desired trajectory collides with them

and sent back to the Bebop which will use it for its MPC algorithm. See figure 6.7 for a
picture of the experimental setup.

This proof of concept has been used in cluttered area used by Parrot for drones
prototyping, presented figure 6.8. It has been tested on two obstacles (here the plant and
the desk chair), but also on the white wall which was not a problem for our depth sensing
protocol and the drone could drift along the wall for multiple flights. For displacement
estimation, we used the embedded odometry algorithm, using Bebop’s vertical camera.
A video is available for further results in our proof of concept. 3.

6.6 Conclusions for this chapter

We proposed in this chapter a way of using depth from our network to get a first working
solution. We were also able to apply a multiple shift architecture to be robust to scenes
with large depth heterogeneity, especially with long range obstacles.

3http://stillbox.ensta.fr/poc_depthnet_mpc.mp4(retrieved 07/24/2019)

http://stillbox.ensta.fr/poc_depthnet_mpc.mp4
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This proof of concept is also very promising because every operation used is actually
differentiable, even the MPC algorithm, thanks to a recent work by Amos et al. [Amo+18].
That way it becomes possible to imagine a training workflow where DepthNet output
would not be trained to get a good depth quality measure anymore, but rather so that the
resulting MPC based on it will get a good trajectory.

As discussed section 1.3.3, ensuring a good trajectory will still require expensive hu-
man supervision with the possible usage of DaGGer [RGB11]. Nonetheless, this chapter
provides a good non-random starting point for training.
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We showed in this work a working strategy to train a neural network to sense depth
based on motion from a stabilized camera, for any kind of domain. We even showed
that the next step in the general obstacle avoidance strategy, which was to train a neural
network to avoid obstacles from a perfect depth map provided by a simulator before con-
catenating it with a real depth sensing solution might be replaced by a differentiable MPC
[Amo+18]. The strategy presented in the introduction (section 1.4.3) and in figure 1.8 is
still valid and might be the subject for future work.

However, thanks to a thorough study on possible drawbacks of depth from vision
algorithms, we could identify several drawbacks of DepthNet that might need to be solved
before being used as a reliable source of information for obstacle avoidance.

7.1 Limitations and future perspectives

7.1.1 UAV depth validation dataset

As heavily discussed on chapter 5, the KITTI dataset [Gei+13] is not well suited to demon-
strate the advantages of our solution. On the other hand, due to the lack of other valida-
tion sets for depth sensing in the context of outdoor flight, we could only have a subjective
validation for the UAV use-case.

It thus seems necessary to construct a validation set with reliable ground-truth depth
and navigation data the same way KITTI was constructed. Several solutions can be
considered:

• Construct a UAV with a calibrated Lidar, similarly to KITTI. It is highly probable that
such a device would not be easy to construct and would be particularly heavy and
dangerous. However, it would be robust to moving objects.
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• Use a heavy structure-from-motion algorithm to get high quality depth map from
3D reconstruction. Algorithms such as Colmap [Sch+16] can be used, or even
proprietary solutions like pix4D 1. The latter has the advantage of automatizing the
flight for an optimized mapping. We can then imagine a two step recording, the first
one being dedicated to mapping and the second one to realistic flight conditions in
the same scene, getting the ground truth depth map from its 3D reconstruction. The
obvious drawback of this solution is the necessity of a rigid scene.

• Using structure from motion with a stereo camera could be an interesting mid-point.
Moving objects can then be detected within a particular range.

7.1.2 Robust smooth and photometric loss

As heavily discussed in chapter 4, today’s state of the art regarding self supervision for
depth sensing mostly relies on heuristics, themselves based on validation results on the
KITTI dataset. A clear understanding of theoretical aspect of self supervision is needed
to perform a truly robust training workflow. A recent interesting work [Bar19] proposed
to replace the L1 photometric loss with a more general equation, where a differentiable
parameter could modify the photometric loss profile, and make it more or less sensitive to
outliers, depending on the sample. In this work, among other tests, Barron showed that by
simply replacing L1 photometric loss with its general form without changing anything else
from original SFMLearner code [Zho+17], he could improve the results initially obtained.

Also, as already discussed section 4.4.5, smoothing could benefit from already devel-
oped solutions for large displacement optical flow. A workflow using the same two step
joint optimization as DTAM [NLD11] for smoothing seems very promising.

Finally, as hinted by the SSIM, a photometric loss that would also take neighboring
pixels into account could be beneficial in order to get more information than only color
to decide whether two points match or not. This was already studied by Brox and Malik
[BM11]. In this work, they considered several features and descriptors to be matched
and deduced that including descriptor matching inside the energy minimization process
was beneficial, especially for large displacement. The problem at the time was the lack
of differentiability and sub pixel accuracy of descriptors. This problem could be easily
adapted for photometric loss with descriptors composed of convolution kernels, resulting
in a feature matching loss.

More generally, self supervision should rely more on techniques developed for opti-
cal flow using the variational approach, because occlusion problems along with efficient
smoothing and illumination robustness are definitely not new.

7.1.3 Moving scenes

The most important limitation of our work is of course the problem of moving scenes
which is explicitly not taken into account in the structure-from-motion paradigm.

As shown by Ranjan et al. [Ran+18], it is possible to estimate moving objects in a
scene, based on the fact that optical flow does not match a specific pattern from estimated
camera movement. That way, depth completion techniques can be used to deduce their
depth from context. Unfortunately, in addition to having to run another potentially heavy
network, that takes us back to the robustness problems we raised in section2.2.1 for
depth from a single frame.

A possible solution could also be to use a stereo rig for ambiguous cases. This solu-
tion has obviously a limited range, but might be enough for safety regarding humans: if

1https://www.pix4d.com/, retrieved 07/24/2019

https://www.pix4d.com/
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the drone is moving too fast for emergency braking to be possible (typically at more than
10m.s−1), the human will be moving slowly compared to the camera, making the resulting
structure-from-motion less erroneous.

If we want a truly moving scene robust depth inference solution, we might have to look
at time-sequence based models such as recurrent neural networks, that explicitly exploit
the time continuity of information: ambiguous perspectives and scales can be solved with
anterior depth inferences [Man+17].

Finally, it should be noted that depth from moving scene problem might only be im-
portant when the end goal is a quality depth map. It might be interesting to consider the
possibility of a neural network dedicated to obstacle avoidance pretrained using depth-
from-motion and thus not being robust to moving scenes at first, but then being trained to
avoid moving obstacle as well.

7.1.4 Bayesian depth inference

For obstacle avoidance, it is interesting to know how confident the network is about a
particular inference. As heavily stressed by e.g. Kendall et al. [KG17; McA+17], Bayesian
inference, not only giving an estimate of a particular value (here the depth) but also the
uncertainty, and more generally the distribution of possible values can be very beneficial
on decision making. That way, particular system can take extra precautions when in
an ambiguous situation. Our main motivation being robustness, it’s easy to see how
beneficial it could be to safety when operating with moving objects or in an unknown
domain.

7.2 Alternative Perspectives

This work has been very directed toward the end goal of obstacle avoidance, which might
lead to believe that depth sensing is only interesting for pretraining purpose in a fully
neural avoidance system.

However, some other applications derived from this work can be used in other con-
texts.

7.2.1 Depth sensing for multi-task learning

As discussed in section 1.3.4 and shown by Kendall et al. [KGC18], multi task is not
only a way to combine several tasks efficiently in term of computational cost, but also
in term of quality when tasks are correlated. It is particularly interesting in the context
of object proposal tasks. Indeed, products like Parrot or DJI usually propose a follow-
me/ActiveTrack functionality that proposes targets to track in the streamed footage on the
user’s phone. There is then already a dedicated training for object proposal networks,
grabbing a pretrained general purpose object detection such as SSD [Liu+16] or YOLO
[Red+16] and finetuning it in a dedicated follow-me training set. The addition of depth
sensing for this training set has the potential to significantly improve the feature extraction
and thus the finetuning, because as illustrated figure 7.1, typical proposed objects highly
correlate with depth discontinuities.

7.2.2 Robust and evolutive passive depth sensing

An interesting perspective that has been developed throughout this thesis it the idea of
having a robust and evolutive depth sensing system based on vision. In other words,
such a system does not require any kind of active sensors, and can improve during its
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Figure 7.1: Multiple different but correlated semantic levels of a particular scene. From
left to right: input, semantic segmentation masks, instance masks, depth. Figure taken
from Kendall et al. [KGC18]

real-time usage. This has been discussed by Casser et al. [Cas+19], where it was used
to overfit to each example of the test set (with a reset of the network between examples).

This technique can be very beneficial in the context of stealth off-road autonomous ve-
hicles. Due to their stealthiness, no active depth sensors can be used and depth has to be
deduced from cameras. Besides, off-road environment are typically more heterogeneous
than a clean road, and our robustness oriented solution can be beneficial compared to
a classical structure from motion analytical algorithm or an evolutive single frame depth
solution.
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•
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Appendix A

Illustration of compensating effect
of linking depth scaled factor to
movement estimation

This appendix is first referenced in section 2.1.
Let’s consider the simplest obstacle avoidance maneuver which consists in braking

with a constant force opposed to velocity vector in front of an obstacle at a distance θ
knowing the vehicle velocity magnitude v.

The vehicle speed needs to get to 0 before having traveled the distance θ. A simple
application of work to kinetic energy relation can tell us that the force magnitude needed
will be

F0 =
mv2

2θ
(A.1)

where m is the mass of the vehicle. Now if we consider an error on measured speed so
that the estimation is ṽ = αv with α 6= 1, α > 0, in case of a depth estimated independently
of ṽ (say from a Lidar, or a stereo camera), the estimated force needed to brake on time
will be F̃ = α2F0, and the actual distance to stop will be θ

α2 .
On the other hand, in the case described section 2.1, where the scale factor is given

by the ratio between apparent speed and measured speed, the estimated depth θ̃ will be
θ̃ = αθ, the resulting force will be F̃ = αF0 and the distance to brake will be θ

α .
The error in navigation strategy, while still present, is less impacted with depth esti-

mated relative to motion than absolute depth.
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Appendix B

Proof on under-estimated depth
over-representation when
optimizing relative error for a
validation set

This appendix is first referenced in section 2.4.2. The goal is to prove the proposition 1

Proposition. Given an estimator e responsible for estimations {θ̃}, in a corresponding
validation dataset V = {(θ̃, θ)}, if the estimator is optimized for that validation set for a
mean relative difference error, it will have more under-estimations than over-estimations.

P(θ̃ < θ|(θ̃, θ) ∈ V) > 0.5

Corollarily, if we have an evenly balanced estimator {θ̃} such that P(θ̃ < θ|(θ̃, θ) ∈
V) = 0.5, then we can find α < 1 such that {αθ̃} is a better estimator according to mean
relative difference MRE.

Proof. Let’s consider the mean relative error of a set of estimations θ̃ with respect to
groundtruth values θ. The error is computed on the set of the estimation/ground truth
pairs. V =

{
(θ̃, θ)

}
.

MRE({θ̃}) = E(θ̃,θ)∈V
|θ̃ − θ|

θ

We consider an estimator {θ̃} to be optimized if for every possible real function f
(which is not dependent to the input of the estimator), the estimator { f (θ̃)} has a worse
error. MRE({θ̃}) < MRE({ f (θ̃)})

In this proof we assume that the estimator is not perfect so that no value θ̃ is exactly
the same as the corresponding θ. ∀(θ̃, θ) ∈ V, θ̃ 6= θ, which is reasonable considering
continuous values.

Let’s then consider a value ε such that |ε| < min
(θ̃,θ)∈V

|θ̃ − θ|
θ̃

.

For ease of notation we write V− =
{
(θ̃, θ), θ̃ < θ

}
and V+ =

{
(θ̃, θ), θ̃ > θ

}
. These

are the sets where the target values are respectively under-estimated and over-estimated.
We can already see that |V−|+ |V+| = |V|. The goal of this demonstration is then to show
that |V−| > |V+|

If we then consider the estimator {θ̃(1 + ε)}, we should get a worse mean relative
error.
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MRE({θ̃(1 + ε)}) = E

(
|θ̃ + εθ̃ − θ|

θ

)

=
|V+|
|V| EV+

(
θ̃ + εθ̃ − θ

θ

)
+
|V−|
|V| EV−

(
θ − θ̃ − εθ̃

θ

)

= MRE({θ̃}) + ε

|V|

(
|V+|EV+

(
θ̃

θ

)
− |V−|EV−

(
θ̃

θ

))

Since the maximum is obtained for ε = 0, we cannot have the term in parenthesis
different to zero, otherwise we could find a better estimator by choosing ε 6= 0 with the
same sign of the term in parenthesis.

As consequence we have

|V+|EV+

(
θ̃

θ

)
= |V−|EV−

(
θ̃

θ

)
(B.1)

By construction, we have EV−

(
θ̃
θ

)
< EV+

(
θ̃
θ

)
.

As a consequence, we have |V−| > |V+|.
By contraposition, we can say that if we have |V−| = |V+|, we can find a scale factor

α < 1 such that {αθ̃} will have a better mean relative error.
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Appendix C

Proof on smoothing an inverse
depth map

This appendix is first referenced in section 4.4.3. The goal is to prove the proposition 2

Proposition. The inverse depth map ξ = 1
θ̃

of a perfect plane has a null Laplacian and is
then stable with respect to smoothing.

Proof. The surface the camera is looking at can be modelized as an affine function of x
and y in the world coordinates (0, ux, uy, uz), uz standing for the optical axis of the camera.

z = θ0 + αx + βy

θ0, α and β being constant values.
Besides, from the pinhole model, for a point (x, y, z), we get the coordinates

u(x, z) = f
x
z
+ u0

v(y, z) = f
y
z
+ v0

As a consequence, we can have the depth θ as a function of image coordinates (u, v)

θ(u, v) = z = θ0 +
αz(u− u0)

f
+

βz(v− v0)

f(
1 +

α(u− u0)

f
+

β(v− v0)

f

)
θ(u, v) = θ0

1
θ(u, v)

=
f + α(u− u0) + β(v− v0)

f θ0

As a consequence, there exist two constant values γ1, γ2 such that:

∀(u, v) ∈ R2,
1
θ
(u, v) = γ1 + γ2u

This implies that the Laplacian of inverse depth is 0 everywhere, and thus the diffusion
operation equivalent to identity.

Then, making the Laplacian of inverse depth 1
θ = ξ converge to 0 is stable with respect

to any perfect plane.
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Appendix D

A Collection of Proofs on diffusion

D.1 Preamble

This appendix is first referenced in section 4.4.4.
This is a collection of proofs regarding propositions on diffusion and gradient diffusion.

They all use to some extent a form of the multi-dimensional integration by parts theorem:

Theorem 1. let Ω ⊂ Rn be a regular region, and let n be the unit outward normal to ∂Ω
(boundaries of Ω) suppose φ : Ω→ R and v : Ω→ Rn are C1 functions. Then∫

Ω
φdiv(v)dV =

∫
∂Ω

φv.ndS−
∫

Ω
v.∇φdV (D.1)

As a basis for our future demonstrations, we can reformulate the proof from Perona
and Malik [PM90]:

Theorem 2. let Ω ⊂ Rn be a regular region, and let n be the unit outward normal to ∂Ω
(boundaries of Ω). Finally, let Ls be the function defined on scalar fields defined on Ω as

Ls RΩ → R

ξ 7→ 1
2

s
Ω c(‖∇ξ‖2)dV

(D.2)

Then the pointwise gradient defined on Ω as ∇ξLs:

∀p ∈ Ω,∇ξLs(p) = −div(c′(‖∇ξ(p)‖2)∇ξ) +

{
c′(‖∇ξ‖2)∇ξ.n if p ∈ ∂Ω
0 otherwise

(D.3)

Proof. Let’s consider the smooth loss introduced at equation 4.4

Ls(ξ) =
1
2

x

Ω

c(‖∇ξ‖2)dV (D.4)

Now if we consider h a C1 function on Ω and t ∈ R we can try to compute the function
Ls(ξ + th) and especially its derivate at t = 0

d
dt t=0

Ls(ξ + th) =
1
2

x

Ω

d
dt t=0

c(‖∇ξ + t∇h‖2)dV

=
x

Ω

c′(‖∇ξ‖2)∇ξ.∇hdV
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By identifying φ = h and v = c′(‖∇ξ‖2)∇ξ in theorem 1, we can apply our theorem
and deduce

d
dt t=0

Ls(ξ + th) = −
x

Ω

div(c′(‖ξ‖2)∇ξ)hdV +
∫

∂Ω
c′(‖ξ‖2)∇ξh.ndS

this equation is valid for every function h. As a consequence, we can deduce the
aforementioned result.

D.2 Diffusion stability

First referenced in section 4.4.5.
We can consider the infinite 1D function

∀i ∈ Z, u0(i) = u(i, 0) = (−1)i (D.5)

The diffusion equation with a step size of η states

∀(i, n) ∈ Z×N+, u(i, nη) = u(i, (n− 1)η) + η∆(u(i, (n− 1)η))

Also, the discrete Laplacian of u0 can be computed to get

∆u(i, 0) = −2u(i, 0) + u(i− 1, 0) + u(i + 1, 0) = −4u(i, 0)

As a consequence,

u(i, η) = u(i, 0)− 4ηu(i, 0) = (1− 4η)u(i, 0)

By recurrence, it’s easy to see

∀(i, n) ∈ Z×N, u(i, nη) = (−1)i × (1− 4η)n (D.6)

If η is above 0.5, the solution diverges. The middle value oscillates around the null-
Laplacian solution with increasing magnitude.

D.3 Diffusion of Inverse

Also first referenced in section 4.4.5.
A simple and pratical example of instability is when the trainable parameters are the

depth map θ and diffusion is applied on ξ. We then get:

f : R|Ω| → R|Ω|

θ 7→ ξ = 1
θ

The jacobian J f (of size |Ω|2 ) can be written as

J f (i, j) = −δij ×
1
θ2

i

Where δij is 1 if i = j otherwise 0.

∂tξ =
∆ξ

θ4 = ∆ξ × ξ4 (D.7)

The closer depth θ is to 0, the larger the effective optimization step, and possibly above
the divergence threshold. (see section D.2)
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Figure D.1: Left: diffusion of the noisy function x 7→ 1
2+sin(x) (bottom) and its correspond-

ing inverse (top). Center: diffusion of the inverse of the noisy function x 7→ 2 + sin(x)
(bottom) and the resulting function (top). Right: Evolution obtained by interleaving diffu-
sion (10 iterations, learning rate of 0.4) and minimization of difference with diffused.

Figure D.1 and figure D.2 show our first method and the deemed more "robust" one
when trying to smooth the inverse of 2 + sin(x) with noise, with both regular diffusion
loss (4.4) and diffusion of gradient (4.5). While not being exactly the same as a regular
diffusion, it appears that the robust method helps to get a more regularized smoothed
map, especially where the gradient from trainable map to the map we want to diffuse is
the highest: naive application of diffusion loss makes the parameters diverge.

D.4 Diffusion of Gradient

D.4.1 Laplacian minimization

First referenced in section 4.4.7. The goal is to prove the equation 4.12

∇ξLs∆ = −∆(c′((∆ξ)2)∆ξ)

with

Ls∆ =
1
2

x

Ω

c
(
(∆ξ)2) dS

Proof. We proceed the same way as for theorem 2. The considered loss function is

Ls =
1
2

∫
Ω

c((∆ξ)2)dV (D.8)

We consider h a C2 function on Ω and t ∈ R and compute the expression
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Figure D.2: Gradient diffusion equivalent of figure D.1.

d
dt t=0

Ls(ξ + th) =
1
2

x

Ω

d
dt t=0

c(‖∆ξ + t∆h‖2)dV

=
x

Ω

c′(‖∆ξ‖2)∆ξ∆hdV

=
x

Ω

c′(‖∆ξ‖2)∆ξdiv∇hdV

For ease of notation, we will now identify c′(‖∆ξ‖2)∆ξ as K. From integration by part
formula (theorem 1), we identify φ = ∇h and v = K.

d
dt t=0

Ls(ξ + th) = −
x

Ω

∇K.∇hdV +
∫

∂Ω
(Kn).∇hdS

This time, we apply the formula twice. For first term (on Ω), we identify φ = h and
v = ∇K.

x

Ω

∇K.∇hdV = −
x

Ω

hdiv∇KdV +
∫

∂Ω
h∇K.ndS (D.9)

For second term (on ∂Ω), we identify φ = h and v = Kn . It can be noted that since
∂Ω is a closed set, its boundaries are an empty set ∂∂Ω = {∅}. We can also that n is
piecewise constant in our case where ∂Ω is a rectangle. Thus divn = 0.∫

∂Ω
(Kn).∇hdS = −

∫
∂Ω

hdiv(Kn)dS = −
∫

∂Ω
h∇K.ndS (D.10)

We can combine equations D.9 and D.10 to get:

d
dt t=0

Ls(ξ + th) =
x

Ω

h∆KdV − 2
∫

∂Ω
h∇K.ndS
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We can deduce the following expression for ∇ξLs:

∀p ∈ Ω,∇ξLs(p) = −∆(c′((∆ξ)2)∆ξ) +

{
∇(c′((∆ξ)2)∆ξ).n if p ∈ ∂Ω
0 otherwise

(D.11)

D.4.2 Divergence minimization

First referenced in section 4.4.8. The goal is to prove the equation 4.14

∇ALs∆ = −∇
(
c′
(
div(A)2) div(A)

)
with

Ls∆ =
x

Ω

c
(
div(A)2) dS

Proof. We want to compute ∇ALs
We now consider h a C1 multidimensional function on Ω and t ∈ R and compute the

expression

d
dt t=0

Ls(A + th) =
1
2

x

Ω

d
dt t=0

c((divA + tdivh)2)dV

=
x

Ω

c′((divA)2)divAdivhdV

We now identify K = c′((divA)2)divA. We also apply formula from theorem 1 by
identifying v = h and φ = K.

d
dt t=0

Ls(A + th) = −
x

Ω

h.∇KdV +
∫

∂Ω
Kh.ndS

We can then deduce:

∀p ∈ Ω,∇ALs(p) = −∇(c′((divA)2)divA) +

{
(c′((divA)2)divA)n if p ∈ ∂Ω
0 otherwise

(D.12)

D.4.3 Isotropic gradient diffusion

First referenced in section 4.4.8. The goal is to prove the equation 4.16

∇ALgdi f f = −∆A

where

Lgdi f f =
x

Ω

(divA)2dS

and ∇(divA0) = ∆A0 at the begining of the optimization.
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Proof. If we retake the result from equation 4.15, we get:

∂t A = ∇(div(A)) = ∆A + ρ(A) = ∆A +

 ∂2 Ay
∂y∂x −

∂2 Ax
∂y2

∂2 Ax
∂x∂y −

∂2 Ay

∂x2

 (D.13)

The second term of this equation ρA can be interpreted as the double rotational.

Indeed, when considering the 3D extension A3 of our vector A, A3 =

 Ax

Ay

0

, we can

easily verify that

rot(rot(A3)) = ∇∧ (∇∧ A3) =


∂2 Ay
∂y∂x −

∂2 Ax
∂y2

∂2 Ax
∂x∂y −

∂2 Ay

∂x2

0

 =

[
ρ(A)

0

]

from the known relation

∆A3 = ∇(div(A3))− rot(rot(A3))

we can extrapolate for our 2D case. Besides, by noting that for any 3D potential field V
we have the equality

rot(∇V)) = 0

we can retrieve the vectorwise diffusion equation. It can also be shown that the second
term of our equation is constant throughout the whole diffusion

We thus have to prove that for any 2D vector field A such that ρ(A) = 0, the mini-
mization of its divergence is equivalent to vectorwise diffusion.

This is already verified at the beginning of the diffusion process, when t=0. Our goal
is then to show that the vector

ρ(A) =

 ∂2 Ay
∂y∂x −

∂2 Ax
∂y2

∂2 Ax
∂x∂y −

∂2 Ay

∂x2


is constant. By looking at the first coordinate of this vector, we get

∂tρ(A)x = ∂t

(
∂2Ay

∂y∂x
− ∂2Ax

∂y2

)
=

∂

∂y

(
∂

∂x
∂t Ay −

∂

∂y
∂t Ax

)
By substituing ∂t Ax and ∂t Ay with the first form of equation 4.13:

∂tρ(A)x =
∂

∂y

(
∂

∂x

(
∂2Ay

∂y2 +
∂2Ax

∂x∂y

)
− ∂

∂y

(
∂2Ax

∂x2 +
∂2Ay

∂x∂y

))
= 0

We proceed with the same technique for ∂tρ(A)y to finally show that the vector ρ(A) is
constant no matter its initial value.
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Titre: Apprentissage robuste d’une carte de profondeur pour l’évitement d’obstacle dans le cas des
caméras volantes, monoculaires et stabilisées

Mots clés: carte de profondeur, robuste, caméra stabilisée, caméra monoculaire, reseau de neu-
rones, apprentissage profond

Résumé: Les drones orientés grand public sont prin-
cipalement des caméras volantes, stabilisées et de
bonne qualité. Ceux-ci ont démocratisé la prise de
vue aérienne, mais avec leur succès grandissant, la
notion de sécurité est devenue prépondérante. Ce
travail s’intéresse à l’évitement d’obstacle, tout en
conservant un vol fluide pour l’utilisateur. Dans ce
contexte technologique, nous utilisons seulement une
caméra stabilisée, par contrainte de poids et de coût.
Pour leur efficacité connue en vision par ordinateur et
leur performance avérée dans la résolution de tâches
complexes, nous utilisons des réseaux de neurones
convolutionnels (CNN). Notre stratégie repose sur un
système de plusieurs niveaux de complexité dont les
premières étapes sont de mesurer une carte de pro-
fondeur depuis la caméra. Cette thèse étudie les ca-
pacités d’un CNN à effectuer cette tâche.
La carte de profondeur, étant particulièrement liée au

flot optique dans le cas d’images stabilisées, nous
adaptons un réseau connu pour cette tâche, FlowNet,
afin qu’il calcule directement la carte de profondeur
à partir de deux images stabilisées. Ce réseau est
appelé DepthNet.
Cette méthode fonctionne en simulateur avec un en-
traînement supervisé, mais n’est pas assez robuste
pour des vidéos réelles. Nous étudions alors les
possibilités d’auto-apprentissage basées sur la re-
projection différentiable d’images. Cette technique
est particulièrement nouvelle sur les CNNs et néces-
site une étude détaillée afin de ne pas dépendre de
paramètres heuristiques.
Finalement, nous développons un algorithme de fu-
sion de cartes de profondeurs pour utiliser DepthNet
sur des vidéos réelles. Plusieurs paires différentes
sont données à DepthNet afin d’avoir une grande
plage de profondeurs mesurées.

Title: Robust Learning of a depth map for obstacle avoidance with a monocular stabilized flying
camera

Keywords: depth map, robust, stabilized camera, monocular camera, neural networks, deep learn-
ing

Abstract: Customer unmanned aerial vehicles
(UAVs) are mainly flying cameras. They democratized
aerial footage, but with their success came security
concerns.
This works aims at improving UAVs safety with obsta-
cle avoidance, while keeping a smooth flight. In this
context, we use only one stabilized camera, because
of weight and cost incentives.
For their robustness in computer vision and their ca-
pacity to solve complex tasks, we chose to use convo-
lutional neural networks (CNN). Our strategy is based
on incrementally learning tasks with increasing com-
plexity which first steps are to construct a depth map
from the stabilized camera. This thesis is focused on
studying ability of CNNs to be trained for this task.
In the case of stabilized footage, the depth map is

closely linked to optical flow. We thus adapt FlowNet,
a CNN known for optical flow, to output directly depth
from two stabilized frames. This network is called
DepthNet.
This experiment succeeded with synthetic footage,
but is not robust enough to be used directly on real
videos. Consequently, we consider self supervised
training with real videos, based on differentiably re-
project images. This training method for CNNs being
rather novel in literature, a thorough study is needed
in order not to depend too much on heuristics.
Finally, we developed a depth fusion algorithm to use
DepthNet efficiently on real videos. Multiple frame
pairs are fed to DepthNet to get a great depth sensing
range.
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